• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 6
  • 4
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 73
  • 73
  • 34
  • 28
  • 23
  • 20
  • 17
  • 16
  • 16
  • 15
  • 14
  • 14
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of Ionic Liquid As a Charge Carrier for the Detection of Neutral Organometallic Complexes Using Electrospray Ionization Mass Spectrometry

Joshi, Ubisha 08 1900 (has links)
A novel application of ionic liquid as a charge carrier for the analysis and detection of neutral organometallic complexes using a mass spectrometer has been presented. The mass spectrometer detects only charged compounds which raise a difficulty in analyzing a neutral molecule that lacks a basic site to associate with charge. Therefore, an effective way of providing charge has always been an area of keen interest in the field of mass spectrometry. Ionic liquids have a very fascinating property of forming a cation-? interaction with other molecules to give a charged complex. In order to take advantage of this, it is important to know the geometric structure of the complex. Advanced methodologies like hydrogen-deuterium exchange and computational calculations have been used assisting in better understanding of the structure of the ionic liquid complexes.
2

Electrical Characterizationon Commercially Available Chemical Vapor Deposition (CVD) Graphene

Anttila-Eriksson, Mikael January 2016 (has links)
Field-effect transistors (FET) based on graphene as channel has extraordinaryproperties in terms of charge mobility, charge carrier density etc. However, there aremany challenges to graphene based FET due to the fact graphene is a monolayer ofatoms in 2-dimentional space that is strongly influenced by the operating conditions.One issue is that the Dirac point, or K-point, shifts to higher gate voltage whengraphene is exposed to atmosphere. In this study graphene field-effect transistors(GFET) based on commercially available CVD graphene are electrically characterizedthrough field effect gated measurements. The Dirac point is initially unobservable andlocated at higher gate voltages (>+42 V), indicating high p-doping in graphene.Different treatments are tried to enhance the properties of GFET devices, such astransconductance, mobility and a decrease of the Dirac point to lower voltages, thatincludes current annealing, vacuum annealing, hot plate annealing, ionized water bathand UV-ozone cleaning. Vacuum annealing and annealing on a hot plate affect thegated response; they might have decreased the overall p-doping, but also introducedDirac points and non-linear features. These are thought to be explained by localp-doping of the graphene under the electrodes. Thus the Dirac point of CVDgraphene is still at higher gate voltages. Finally, the charge carrier mobility decreasedin all treatments except current – and hot plate annealing, and it is also observed that charge carrier mobilities after fabrication are lower than the manufacturer estimatesfor raw graphene on SiO2/Si substrate.
3

Ion rarefaction waves and associated phenomena

Coates, Andrew J. January 1982 (has links)
This thesis contains an experimental and theoretical study of the response of a plasma to the motion of the positive space-charge sheath which bounds it. It is known theoretically that, if a sheath edge is moved at a speed less than the speed of ion acoustic waves, a region of ion rarefaction propagates into the plasma at the ion acoustic speed. In the past, difficulty has been encountered with the theory of ion acoustic wave generation from moving sheath edges, where compressions are necessary in addition to rarefactions. The initial conditions of many previous calculations omit the formation of a steady-state presheath where ions are accelerated to form the sheath. Some calculations are described which include the effects of an initial presheath by constructing a one-dimensional plasma solution where a production term balances the losses of ions to the walls. The plasma response to the motion of one boundary is found using the method of characteristics with appropriate boundary conditions. Ion rarefaction waves are associated with expanding sheaths while ion 'enhancement' waves (compressive features) are formed on sheath collapse. In each case the wave front moves at the local ion acoustic speed which includes the effects of ion drift. The presence of the presheath is essential to the generation of enhancements. The constructional details of a multidipole device are discussed, and the results of Langmuir probe and ion acoustic wave experiments are used to determine the parameters of a quiescent argon plasma. Some experiments on moving sheaths in such a plasma are then considered. Negative voltage ramps are applied to a plate and the plasma response is measured using sampled probe techniques. As the plate-plasma voltage increases, the ion-rich sheath expands at a speed which depends on the applied voltage waveform. For sheath edge speeds less than the ion acoustic speed, an ion rarefaction wave is formed. As the voltage decreases, the sheath collapses and an ion enhancement wave propagates into the plasma. Both wavefronts are observed to move at the local ion acoustic speed which increases with distance from the plate in agreement with theory.
4

Elektrické transportní vlastnosti materiálů pro organickou elektroniku / Electrical transport properties of materials for organic electronics

Stříteský, Stanislav January 2012 (has links)
My master thesis is focused on design and realization fully automated system which will be used for the characterization of the organic FET structure, based on DPP derivatives with follow optimization of the characterization process. Program „MeasFET“ has been created at the LabVIEW surroundings that drives hardware gadgets was build-up during last year. Furthermore, initial tests were taken for optimalization process of charge carrier mobility measurements in derivatives DPP.
5

Conjugated Polymer Networks: Synthesis and Properties

Kokil, Akshay 18 July 2005 (has links)
No description available.
6

Charge carrier relaxation in halide perovskite semiconductors for optoelectronic applications

Richter, Johannes Martin January 2018 (has links)
Lead halide perovskites have shown remarkable device performance in both solar cells and LEDs. Whilst the research efforts so far have been mainly focussed on device optimisation, little is known about the photophysical properties. For example, the nature of the bandgap is still debated and an indirect bandgap due to a Rashba splitting has been suggested. In this thesis, we study the early-time carrier relaxation and its impact on photoluminescence emission. We first study ultrafast carrier thermalization processes using 2D electronic spectroscopy and extract characteristic carrier thermalization times from below 10 fs to 85 fs. We then investigate the early-time photoluminescence emission during carrier cooling. We observe that the luminescence signal shows a rise over 2 picoseconds in CH3NH3PbI3 while carriers cool to the band edge. This shows that luminescence of hot carriers is slower than that of cold carriers, as is found in direct gap semiconductors. We conclude that electrons and holes show strong overlap in momentum space, despite the potential presence of a small band offset arising from a Rashba effect. Recombination and device performance of perovskites are thus better described within a direct bandgap model. We finally study carrier recombination in perovskites and the impact of photon recycling. We show that, for an internal photoluminescence quantum yield of 70%, we measure external yields as low as 15% in planar films, where light out-coupling is inefficient, but observe values as high as 57% in films on textured substrates that enhance out-coupling. We study the photo-excited carrier dynamics and use a rate equation to relate radiative and non-radiative recombination events to measured photoluminescence efficiencies. We conclude that the use of textured active layers has the ability to improve power conversion efficiencies for both LEDs and solar cells.
7

Density of States and Charge Carrier Transport in Organic Donor-Acceptor Blend Layers / Zustandsdichte und Ladungsträgertransport in Organischen Donator-Akzeptor-Mischschichten

Fischer, Janine 23 October 2015 (has links) (PDF)
In the last 25 years, organic or "plastic" solar cells have gained commercial interest as a light-weight, flexible, colorful, and potentially low-cost technology for direct solar energy conversion into electrical power. Currently, organic solar cells with a maximum power conversion effciency (PCE) of 12% can compete with classical silicon technology under certain conditions. In particular, a variety of strongly absorbing organic molecules is available, enabling custom-built organic solar cells for versatile applications. In order to improve the PCE, the charge carrier mobility in organic thin films must be improved. The transport characterization of the relevant materials is usually done in neat layers for simplicity. However, the active layer of highly efficient organic solar cells comprises a bulk heterojunction (BHJ) of a donor and an acceptor component necessary for effective charge carrier generation from photo-generated excitons. In the literature, the transport properties of such blend layers are hardly studied. In this work, the transport properties of typical BHJ layers are investigated using space-charge limited currents (SCLC), conductivity, impedance spectroscopy (IS), and thermally stimulated currents (TSC) in order to model the transport with numerical drift-diffusion simulations. Firstly, the influence of an exponential density of trap states on the thickness dependence of SCLCs in devices with Ohmic injection contacts is investigated by simulations. Then, the results are applied to SCLC and conductivity measurements of electron- and hole-only devices of ZnPc:C60 at different mixing ratios. Particularly, the field and charge carrier density dependence of the mobility is evaluated, suggesting that the hole transport is dominated by exponential tail states acting as trapping sites. For comparison, transport in DCV5T-Me33:C60, which shows better PCEs in solar cells, is shown not to be dominated by traps. Furthermore, a temperature-dependent IS analysis of weakly p-doped ZnPc:C60 (1:1) blend reveals the energy-resolved distribution of occupied states, containing a Gaussian trap state as well as exponential tail states. The obtained results can be considered a basis for the characterization of trap states in organic solar cells. Moreover, the precise knowledge of the transport-relevant trap states is shown to facilitate modeling of complete devices, constituting a basis for predictive simulations of optimized device structures. / Organische oder "Plastik"-Solarzellen haben in den letzten 25 Jahren eine rasante Entwicklung durchlaufen. Kommerziell sind sie vor allem wegen ihres geringen Gewichts, Biegsamkeit, Farbigkeit und potentiell geringen Herstellungskosten interessant, was zukünftig auf spezielle Anwendungen zugeschnittene Solarzellen ermöglichen wird. Die Leistungseffzienz von 12% ist dabei unter günstigen Bedingungen bereits mit klassischer Siliziumtechnologie konkurrenzfähig. Um die Effzienz weiter zu steigern und damit die Wirtschaftlichkeit zu erhöhen, muss vor allem die Ladungsträgerbeweglichkeit verbessert werden. In organischen Solarzellen werden typischerweise Donator-Akzeptor-Mischschichten verwendet, die für die effziente Generation freier Ladungsträger aus photo-induzierten Exzitonen verantwortlich sind. Obwohl solche Mischschichten typisch für organische Solarzellen sind, werden Transportuntersuchungen der relevanten Materialien der Einfachheit halber meist in ungemischten Schichten durchgeführt. In der vorliegenden Arbeit wird der Ladungstransport in Donator-Akzeptor-Mischschichten mithilfe raumladungsbegrenzter Ströme (space-charge limited currents, SCLCs), Leitfähigkeit, Impedanzspektroskopie (IS) und thermisch-generierter Ströme (thermally stimulated currents, TSC) untersucht und mit numerischen Drift-Diffusions-Simulationen modelliert. Zunächst wird mittels Simulation der Einfluss exponentiell verteilter Fallenzustände auf das schichtdickenabhängige SCLC-Verhalten unipolarer Bauelemente mit Ohmschen Kontakten untersucht. Die Erkenntnisse werden dann auf Elektronen- und Lochtransport in ZnPc:C60-Mischschichten mit verschiedenen Mischverhältnissen angewendet. Dabei wird die Beweglichkeit als Funktion von elektrischem Feld und Ladungsträgerdichte dargestellt, um SCLC- und Leitfähigkeitsmessungen zu erklären, was mit einer exponentiellen Fallenverteilung gelingt. Zum Vergleich werden dieselben Untersuchungen in DCV2-5T-Me33:C60, dem effizientesten der bekannten Solarzellenmaterialien dieser Art, wiederholt, ohne Anzeichen für fallendominierten Transport. Des weiteren werden erstmals schwach p-dotierte ZnPc:C60-Mischschichten mit temperaturabhängiger IS untersucht, um direkt die Dichte besetzter Lochfallenzustände zu bestimmen. Dabei werden wiederum exponentielle Fallenzustände sowie eine Gaußförmige Falle beobachtet. Insgesamt tragen die über Fallenzustände in Mischschichten gewonnenen Erkenntnisse zum Verständnis von Transportprozessen bei und bilden damit eine Grundlage für die systematische Identifizierung von Fallenzuständen in Solarzellen. Außerdem wird gezeigt, dass die genaue Beschreibung der transportrelevanten Fallenzustände die Modellierung von Bauelementen ermöglicht, auf deren Grundlage zukünftig optimierte Probenstrukturen vorhergesagt werden können.
8

Density of States and Charge Carrier Transport in Organic Donor-Acceptor Blend Layers / Zustandsdichte und Ladungsträgertransport in Organischen Donator-Akzeptor-Mischschichten

Fischer, Janine 12 June 2015 (has links)
In the last 25 years, organic or "plastic" solar cells have gained commercial interest as a light-weight, flexible, colorful, and potentially low-cost technology for direct solar energy conversion into electrical power. Currently, organic solar cells with a maximum power conversion effciency (PCE) of 12% can compete with classical silicon technology under certain conditions. In particular, a variety of strongly absorbing organic molecules is available, enabling custom-built organic solar cells for versatile applications. In order to improve the PCE, the charge carrier mobility in organic thin films must be improved. The transport characterization of the relevant materials is usually done in neat layers for simplicity. However, the active layer of highly efficient organic solar cells comprises a bulk heterojunction (BHJ) of a donor and an acceptor component necessary for effective charge carrier generation from photo-generated excitons. In the literature, the transport properties of such blend layers are hardly studied. In this work, the transport properties of typical BHJ layers are investigated using space-charge limited currents (SCLC), conductivity, impedance spectroscopy (IS), and thermally stimulated currents (TSC) in order to model the transport with numerical drift-diffusion simulations. Firstly, the influence of an exponential density of trap states on the thickness dependence of SCLCs in devices with Ohmic injection contacts is investigated by simulations. Then, the results are applied to SCLC and conductivity measurements of electron- and hole-only devices of ZnPc:C60 at different mixing ratios. Particularly, the field and charge carrier density dependence of the mobility is evaluated, suggesting that the hole transport is dominated by exponential tail states acting as trapping sites. For comparison, transport in DCV5T-Me33:C60, which shows better PCEs in solar cells, is shown not to be dominated by traps. Furthermore, a temperature-dependent IS analysis of weakly p-doped ZnPc:C60 (1:1) blend reveals the energy-resolved distribution of occupied states, containing a Gaussian trap state as well as exponential tail states. The obtained results can be considered a basis for the characterization of trap states in organic solar cells. Moreover, the precise knowledge of the transport-relevant trap states is shown to facilitate modeling of complete devices, constituting a basis for predictive simulations of optimized device structures.:1 Introduction 2 Organic Semiconductors and Solar Cells 2.1 Structural, Optical, and Energetic Properties 2.2 Charge Carrier Transport 2.2.1 Classical Transport Models 2.2.2 Hopping and Tunneling Transport 2.2.3 Limitations of Transport Characterization 2.3 Doping 2.4 Single Carrier Devices 2.4.1 Theory of Space-Charge Limited Currents 2.4.2 Electrical Potential Mapping by Thickness Variation 2.4.3 Influence of the Contacts 2.5 Organic Solar Cells 2.5.1 Principles 2.5.2 The p-i-n Concept 2.5.3 Recombination 2.5.4 Electrical Characterization 3 Numerical Drift-Diffusion Simulations 3.1 Modeling Organic Semiconductors 3.2 System of Differential Equations 3.3 Simulation Algorithm and Modules 4 Exploiting Contact Diffusion Currents for Trap Characterization in Organic Semiconductors 4.1 Motivation 4.2 Drift-Diffusion Model 4.3 Results and Discussion 4.4 Conclusion 5 Transport Characterization of Donor-Acceptor Blend Layers 5.1 Motivation 5.2 Device Fabrication 5.3 Hole Transport in ZnPc:C60 Blends with Balanced Mixing Ratios 5.3.1 Current-Voltage Measurements 5.3.2 Drift-Diffusion Model 5.3.3 Modeling Results 5.3.4 Discussion 5.4 Hole Transport in Fullerene-Rich ZnPc:C60 Blends 5.4.1 Results and Discussion 5.5 Electron Transport in ZnPc:C60 (1:1) 5.5.1 Results and Discussion 5.6 Transport in Blend Layers with the High Efficiency Donor DCV2-5T-Me33 5.6.1 Hole Transport in DCV2-5T-Me33:C60 5.6.2 Electron Transport in DCV2-5T-Me33:C60 5.7 Conclusions for Transport in Blend Layers 6 Doping-Enabled Density of States Determination in Donor-Acceptor Blend Layers 6.1 Motivation 6.2 Theory 6.3 Methods 6.4 Results 6.4.1 Impedance Spectroscopy 6.4.2 Fermi level, Mott-Schottky Analysis, and Band Diagram 6.4.3 DOOS Determination 6.4.4 Thermally Stimulated Currents 6.4.5 Solar Cell Characteristics 6.5 Discussion 6.6 Conclusions on the DOS of ZnPc:C60 (1:1) 7 Conclusion and Outlook Materials, Symbols, Abbreviations Bibliography / Organische oder "Plastik"-Solarzellen haben in den letzten 25 Jahren eine rasante Entwicklung durchlaufen. Kommerziell sind sie vor allem wegen ihres geringen Gewichts, Biegsamkeit, Farbigkeit und potentiell geringen Herstellungskosten interessant, was zukünftig auf spezielle Anwendungen zugeschnittene Solarzellen ermöglichen wird. Die Leistungseffzienz von 12% ist dabei unter günstigen Bedingungen bereits mit klassischer Siliziumtechnologie konkurrenzfähig. Um die Effzienz weiter zu steigern und damit die Wirtschaftlichkeit zu erhöhen, muss vor allem die Ladungsträgerbeweglichkeit verbessert werden. In organischen Solarzellen werden typischerweise Donator-Akzeptor-Mischschichten verwendet, die für die effziente Generation freier Ladungsträger aus photo-induzierten Exzitonen verantwortlich sind. Obwohl solche Mischschichten typisch für organische Solarzellen sind, werden Transportuntersuchungen der relevanten Materialien der Einfachheit halber meist in ungemischten Schichten durchgeführt. In der vorliegenden Arbeit wird der Ladungstransport in Donator-Akzeptor-Mischschichten mithilfe raumladungsbegrenzter Ströme (space-charge limited currents, SCLCs), Leitfähigkeit, Impedanzspektroskopie (IS) und thermisch-generierter Ströme (thermally stimulated currents, TSC) untersucht und mit numerischen Drift-Diffusions-Simulationen modelliert. Zunächst wird mittels Simulation der Einfluss exponentiell verteilter Fallenzustände auf das schichtdickenabhängige SCLC-Verhalten unipolarer Bauelemente mit Ohmschen Kontakten untersucht. Die Erkenntnisse werden dann auf Elektronen- und Lochtransport in ZnPc:C60-Mischschichten mit verschiedenen Mischverhältnissen angewendet. Dabei wird die Beweglichkeit als Funktion von elektrischem Feld und Ladungsträgerdichte dargestellt, um SCLC- und Leitfähigkeitsmessungen zu erklären, was mit einer exponentiellen Fallenverteilung gelingt. Zum Vergleich werden dieselben Untersuchungen in DCV2-5T-Me33:C60, dem effizientesten der bekannten Solarzellenmaterialien dieser Art, wiederholt, ohne Anzeichen für fallendominierten Transport. Des weiteren werden erstmals schwach p-dotierte ZnPc:C60-Mischschichten mit temperaturabhängiger IS untersucht, um direkt die Dichte besetzter Lochfallenzustände zu bestimmen. Dabei werden wiederum exponentielle Fallenzustände sowie eine Gaußförmige Falle beobachtet. Insgesamt tragen die über Fallenzustände in Mischschichten gewonnenen Erkenntnisse zum Verständnis von Transportprozessen bei und bilden damit eine Grundlage für die systematische Identifizierung von Fallenzuständen in Solarzellen. Außerdem wird gezeigt, dass die genaue Beschreibung der transportrelevanten Fallenzustände die Modellierung von Bauelementen ermöglicht, auf deren Grundlage zukünftig optimierte Probenstrukturen vorhergesagt werden können.:1 Introduction 2 Organic Semiconductors and Solar Cells 2.1 Structural, Optical, and Energetic Properties 2.2 Charge Carrier Transport 2.2.1 Classical Transport Models 2.2.2 Hopping and Tunneling Transport 2.2.3 Limitations of Transport Characterization 2.3 Doping 2.4 Single Carrier Devices 2.4.1 Theory of Space-Charge Limited Currents 2.4.2 Electrical Potential Mapping by Thickness Variation 2.4.3 Influence of the Contacts 2.5 Organic Solar Cells 2.5.1 Principles 2.5.2 The p-i-n Concept 2.5.3 Recombination 2.5.4 Electrical Characterization 3 Numerical Drift-Diffusion Simulations 3.1 Modeling Organic Semiconductors 3.2 System of Differential Equations 3.3 Simulation Algorithm and Modules 4 Exploiting Contact Diffusion Currents for Trap Characterization in Organic Semiconductors 4.1 Motivation 4.2 Drift-Diffusion Model 4.3 Results and Discussion 4.4 Conclusion 5 Transport Characterization of Donor-Acceptor Blend Layers 5.1 Motivation 5.2 Device Fabrication 5.3 Hole Transport in ZnPc:C60 Blends with Balanced Mixing Ratios 5.3.1 Current-Voltage Measurements 5.3.2 Drift-Diffusion Model 5.3.3 Modeling Results 5.3.4 Discussion 5.4 Hole Transport in Fullerene-Rich ZnPc:C60 Blends 5.4.1 Results and Discussion 5.5 Electron Transport in ZnPc:C60 (1:1) 5.5.1 Results and Discussion 5.6 Transport in Blend Layers with the High Efficiency Donor DCV2-5T-Me33 5.6.1 Hole Transport in DCV2-5T-Me33:C60 5.6.2 Electron Transport in DCV2-5T-Me33:C60 5.7 Conclusions for Transport in Blend Layers 6 Doping-Enabled Density of States Determination in Donor-Acceptor Blend Layers 6.1 Motivation 6.2 Theory 6.3 Methods 6.4 Results 6.4.1 Impedance Spectroscopy 6.4.2 Fermi level, Mott-Schottky Analysis, and Band Diagram 6.4.3 DOOS Determination 6.4.4 Thermally Stimulated Currents 6.4.5 Solar Cell Characteristics 6.5 Discussion 6.6 Conclusions on the DOS of ZnPc:C60 (1:1) 7 Conclusion and Outlook Materials, Symbols, Abbreviations Bibliography
9

Fotogenerace nosičů náboje v substituovaných polyacetylenech / Photogeneration of charge carriers in substituted polyacetylenes

Jex, Michal January 2013 (has links)
We present an improved model of charge carrier photogeneration in π-conju- gated polymers with weak intermolecular interactions based on the model of Arkhipov. It includes quantum effects affecting the creation of charge transfer states, which occurs as an intermediate step in the free charge carrier photo- generation process. The electrostatic potential between the electron and the hole and transfer integrals needed for the calculation of the potential barrier for the charge transfer state dissociation are calculated quantum-chemically. We apply our model on experimental data of the charge carrier photogenera- tion efficiency in poly[1-trimethylsilylphenyl,2-phenyl]acetylene to explain its dependence on applied electric field. We eliminate several problems of the previous model. We are able to fit experimental data with just one set of parameters in the whole interval of the applied electric field. We do not have to consider several intervals of the electric field separately as in the previous work and reduce the number of needed parameters to three. Key words π-conjugated polymers, charge carrier photogeneration, photoconductivity 1
10

Fluorescence enhancement strategies for polymer semiconductors

Harkin, David January 2017 (has links)
One of the major challenges in the field of organic semiconductors is to develop molecular design rules and processing routes which optimise the charge carrier mobility, whilst independently controlling the radiative and non-radiative processes. To date there has existed a seeming trade-off between charge carrier mobility and photoluminescence efficiency, which limits the development of some devices such as electrically pumped laser diodes. This thesis investigates fluorescence enhancement strategies for high-mobility polymer semiconductor systems and the mechanisms by which they currently display poor emission properties. Four independent approaches were taken and are detailed as follows. 1. Solubilising chain engineering It is shown that for the high mobility polymer poly(indacenodithiophene-co-benzothiadiazole), the addition of a phenyl- initiated side chain can enhance the solid-state fluorescence quantum yield, exciton lifetime and exciton diffusion length significantly in comparison to that without phenyl-addition. 2. Energy transfer to a highly fluorescent chromophore It is shown that for the high mobility polymer poly(indacenodithiophene-co-benzothiadiazole) efficient energy transfer to a more emissive squaraine dye molecule is possible despite fast non-radiative decay short exciton diffusion lengths. This results in a significant fluorescence enhancement, which in turn facilitates an order of magnitude increase of the efficiency of polymer light emitting diodes made from this material combination. 3. Energy gap engineering The well known Energy Gap Law predicts an increase in the non-radiative rate as the optical bandgap of an organic chromophore decreases in energy. In combination with this, almost all polymer semiconductors reported to date with high charge carrier mobility have low optical bandgaps. Therefore, molecular design principles which act to increase the optical bandgap of polymer semiconductors whilst retaining a high mobility were sought out. One specific system was successfully identified and showed a significant fluorescence enhancement compared to is predecessor poly(indacenodithiophene-co-benzothiadiazole) in both the solution and the solid state. It is found that the Frenkel exciton lifetime in this new system is a factor of four larger which also results in a significantly increased exciton diffusion length. An inter-chain electronic state is also identified and discussed. 4. Hydrogen substitution For some low-bandgap material systems such as erbium chromophores, high energy vibrational modes such as the C-H stretching mode can act as non-radiative pathways. The effect of hydrogen substitution with deuterium and fluorine was therefore investigated in a series of polythiophene derivative families. It was found that in the solid state, fluorescence and exciton lifetime enhancement occurred when the backbone hydrogen atoms were replaced with fluorine. However, evidence is given that this was not owing to the initial hypothesis, and is more likely owing to structural differences which occur in these substituted material systems.

Page generated in 0.0425 seconds