• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 24
  • 17
  • 12
  • 10
  • 9
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A User Programmable Battery Charging System

Amanor-Boadu, Judy M 03 October 2013 (has links)
Rechargeable batteries are found in almost every battery powered application. Be it portable, stationary or motive applications, these batteries go hand in hand with battery charging systems. With energy harvesting being targeted in this day and age, high energy density and longer lasting batteries with efficient charging systems are being developed by companies and original equipment manufacturers. Whatever the application may be, rechargeable batteries, which deliver power to a load or system, have to be replenished or recharged once their energy is depleted. Battery charging systems must perform this replenishment by using very fast and efficient methods to extend battery life and to increase periods between charges. In this regard, they have to be versatile, efficient and user programmable to increase their applications in numerous battery powered systems. This is to reduce the cost of using different battery chargers for different types of battery powered applications and also to provide the convenience of rare battery replacement and extend the periods between charges. This thesis proposes a user programmable charging system that can charge a Lithium ion battery from three different input sources, i.e. a wall outlet, a universal serial bus (USB) and an energy harvesting system. The proposed charging system consists of three main building blocks, i.e. a pulse charger, a step down DC to DC converter and a switching network system, to extend the number of applications it can be used for. The switching network system is to allow charging of a battery via an energy harvesting system, while the step down converter is used to provide an initial supply voltage to kick start the energy harvesting system. The pulse charger enables the battery to be charged from a wall outlet or a USB network. It can also be reconfigured to charge a Nickel Metal Hydride battery. The final design is implemented on an IBM 0.18µm process. Experimental results verify the concept of the proposed charging system. The pulse charger is able to be reconfigured as a trickle charger and a constant current charger to charge a Li-ion battery and a Nickel Metal Hydride battery, respectively. The step down converter has a maximum efficiency of 90% at an input voltage of 3V and the charging of the battery via an energy harvesting system is also verified.
12

Design of a high-efficiency, high-performance zero-voltage-switched battery charger-discharger for the NASA EOS space platform /

Espinosa, Pablo A., January 1994 (has links)
Thesis (M.S.)--Virginia Polytechnic Institute and State University, 1994. / Vita. Abstract. Includes bibliographical references (leaves 121-123). Also available via the Internet.
13

Estaciones de recarga para vehículos eléctricos / Charging stations for electric vehicles

Cortez Sauñe, Anyela Lilian, Delgadillo Alcocer , Alejandra, Garcia Zevallos, Bardo Sebastian, Melgarejo Vergaray, Thalia Kelly, Julque Cordova, Luis Angel 14 July 2020 (has links)
¿Sabías que los vehículos eléctricos como transporte serian la solución tecnológica para la contribución con el cuidado del medio ambiente? Decimos esto porque hoy en día los vehículos eléctricos son de rápida implementación que contribuye a resolver el problema de la contaminación del medio ambiente, con un transporte ecológico también se mejora la calidad del aire ya que a la circular no emiten el CO2 porque el motor no emite ningún tipo de humo, debido a que estos son impulsados por uno o varios motores eléctricos en vez de motores de combustión (gasolina o diésel). Ahora ¿Tenias conocimiento que los vehículos eléctricos se recargan por 8 horas y tienen una capacidad especifica de kilometraje de duración de recarga y que las baterías se pueden enchufar a la red cuando estén estacionados? En comparación con los vehículos de motor de combustión, el transporte eléctrico tiene ventajas obvias en cuanto a las emisiones y nuestra salud, ya que solo el transporte es responsable de cerca del 23% de las emisiones de dióxido de carbono energéticas a nivel mundial. Lo que se pretende es lanzar al mercado son estaciones de recarga se podría reducir el tiempo de carga en 20minutos en lugares estratégicos sin necesidad de regresar a casa. Actualmente casi el 80% de los dueños de los vehículos realizan sus cargas en sus propios domicilios, por ello las diferencias entre cargar en estaciones y los hogares, es que en los hogares puede demorar entre 4 y 6 horas una recarga completa. / Did you know that electric vehicles as transport would be the technological solution for the contribution to caring for the environment? We say this because nowadays electric vehicles are of rapid implementation that contributes to solving the problem of environmental pollution, with an ecological transport the air quality is also improved since in the circular they do not emit CO2 because the engine does not emit no smoke, because they are powered by one or more electric motors instead of combustion engines (gasoline or diesel). Now, did you know that electric vehicles recharge for 8 hours and have a specific capacity of mileage of recharge duration and that batteries can be plugged into the network when parked?. Compared to combustion engine vehicles, electric transport has obvious benefits in terms of emissions and our health, as transport alone is responsible for around 23% of global energy carbon dioxide emissions. What is intended is to launch to the market are recharging stations, the charging time could be reduced by 20 minutes in strategic places without the need to return home. Currently, almost 80% of vehicle owners carry out their charges in their own homes, so the differences between charging at stations and in homes is that in homes it can take 4 to 6 hours to fully recharge. / Trabajo de investigación
14

Bi-directional Charging System Design for a set of Li-ion Batteries Located at Angstrom Laboratory Campus of Uppsala University

Mohammed, Mosab January 2023 (has links)
In this study, onboard chargers for EVs are investigated and a design of bi-directional onboard chargers is proposed and simulated. The goal of the charger is to be built in the future to be used in the test setup at Uppsala University. The charger consists of two stages: a power factor correction (PFC) converter, which converts AC voltages and currents from the grid side to DC while maintaining a unity power factor, and a bi-directional buck-boost converter, which regulates the charging and discharging current of the battery. The model was built using MATLAB/SIMULINK and the d-q synchronous reference frame was utilized to implement the current controller of the PFC converter, while the bi-directional buck-boost current controller was constructed using DC pulse width modulation. The Proportional and Integral gains were tuned using the MATLAB single input and single output tool (sisotool). The converter's topologies, structure, and corresponding mathematical model were investigated, and the charger was simulated and tested for charging and discharging modes. The battery voltage, current, and state of charge were monitored during all modes of operation to evaluate the performance of the buck-boost controller, and the functionality of the PFC controller and filter was tested by measuring the currents and voltages on the AC side. The charging and discharging efficiencies were mapped under various battery voltages and current sets to determine the performance of the charger under different operating conditions. The charger demonstrated excellent performance during charging and discharging modes and recommendations for future work to improve the efficiency and performance of bi-directional charging systems were provided.
15

Optimized design and analysis of a voltage-fed, push-pull, autotransformer battery discharger for the NASA space platform

Deuty, Scott W. 04 August 2009 (has links)
A contract was awarded to the Virginia Power Electronics Center to compare two battery discharger topologies for use on the Earth Observing System. The following report is the result of the optimal design, build and test of Voltage-Fed, Push-Pull Autotransformer battery discharger topology. The main thrust of this document is to achieve an optimal efficiency. The list of available parts is restricted to only those that are approved. Derating guidelines restrict the choice of power stage semiconductors in a manner that degrades efficiency so efficiency gains are sought by optimization of the power stage magnetics. A second goal of the design is to achieve optimal small and large signal performance. / Master of Science
16

Design of a high-efficiency, high-performance zero-voltage-switched battery charger-discharger for the NASA EOS space platform

Espinosa, Pablo A. 31 October 2009 (has links)
The integration of two Zero-Voltage-Switched Bidirectional Battery Charger Discharger (ZVS-BBCD) units into a space power system is shown. A robust design featuring: four interleaved phases, commandable charge rates, overcurrent protection, overvoltage protection, soft starting, reliable gate drive circuitry, high efficiency, and good dynamics is demonstrated. The ZVS-BBCD is compared to separate hard-switched multimodule charge and discharge units in weight and efficiency and is found to be significantly lighter with comparable losses. The ZVS-BBCD has similar characteristics in discharge and in charge bus regulation modes and allows the use of a common control design for both modes. The two ZVS-BBCDs are integrated into the NASA power system testbed built at the Virginia Power Electronics Center (VPEC) to test their dynamics. The result shows good characteristics including low bus impedance and fast transient response. / Master of Science
17

Carregador de Baterias MonofÃsico Para AplicaÃÃo em VeÃculos ElÃtricos / âSingle-Phase Battery Charger Feasible for Electric Vehicles Applicationsâ,

CÃsar Orellana Lafuente 28 June 2011 (has links)
Este trabalho apresenta o estudo de um carregador de baterias monofÃsico aplicado a veÃculos elÃtricos. Este carregador à composto por dois estÃgios de processamento de energia e um circuito digital de supervisÃo para controlar a tensÃo sobre o banco de baterias e a corrente de recarga das mesmas. O primeiro estÃgio consiste de um conversor CA-CC bridgeless com caracterÃstica de alto fator de potÃncia, e o segundo estÃgio à representado por um conversor CC-CC fullbridge com isolamento em alta frequÃncia e comutaÃÃo sob tensÃo nula (Zero Voltage Switching â ZVS). Para ambos os conversores, foi realizada uma anÃlise qualitativa e quantitativa, bem como apresentados exemplos de projeto para facilitar o dimensionamento dos componentes. Finalmente, com os componentes escolhidos, foi montado um protÃtipo que permite carregar de uma atà oito baterias de 12 V conectadas em sÃrie. O sistema apresenta como especificaÃÃes: tensÃo de entrada alternada de 220 VÂ15%; tensÃo de saÃda contÃnua de 120 V; corrente de saÃda contÃnua de 20 A; e potÃncia mÃdia de saÃda de 2,4 kW. / This work presents a single-phase battery charger for electric vehicles. This converter is composed by two energy processing stages and a digital circuit to control the voltage across the batteries and their respective charging current. The first stage is a high power factor ACDC bridgeless converter, while the second one consists on a ZVS (Zero Voltage Switching) high frequency isolated DC-DC full-bridge converter. For both converters, the qualitative and quantitative analyses have been performed, as well as design examples have been presented in order to ease the components calculation. Finally, a prototype that allows charging up to eight series-connected 12 V batteries has been built. The system specifications are: AC input voltage of 220 V Â15%; DC output voltage of 120 V; DC output current of 20 A; and average output power of 2.4 kW.
18

Διάταξη φόρτισης συσσωρευτών ηλεκτροκίνητου οχήματος

Παναγόπουλος, Κωνσταντίνος 10 March 2014 (has links)
Η παρούσα διπλωματική εργασία πραγματεύεται το σχεδιασμό και την υλοποίηση της διάταξης φόρτισης συσσωρευτών ενός μικρού ηλεκτροκίνητου οχήματος. Αυτή η διάταξη έχει ονομαστική ισχύ 1kW και αποτελεί το μέσο που συνδέει τους συσσωρευτές με το δίκτυο παροχής ενέργειας. Η εκπόνηση της εργασίας πραγματοποιήθηκε στο Εργαστήριο Ηλεκτρομηχανικής Μετατροπής Ενέργειας του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών. Σκοπός είναι η υλοποίηση ενός φορτιστή ο οποίος πρέπει να έχει υψηλό βαθμό απόδοσης και ταυτόχρονα να προσφέρει ασφάλεια στο χρήστη. Ωστόσο, βασική επιδίωξη είναι να μην επιβαρύνει το δίκτυο με την έγχυση ανώτερων αρμονικών. Έτσι, στη σχεδίαση συμπεριλαμβάνεται η εφαρμογή τεχνικής Διόρθωσης του Συντελεστή Ισχύος (Power Factor Correction). Χρησιμοποιείται ηλεκτρονικός μετατροπέας ισχύος τύπου Flyback (υποβιβασμού-ανύψωσης) με ενεργό κύκλωμα καταστολής υπερτάσεων (Snubber) και μετασχηματιστή απομόνωσης. Αρχικά, παρουσιάζονται τα οφέλη της ηλεκτροκίνησης. Κατόπιν, πραγματοποιείται η θεωρητική ανάλυση και μελέτη της βαθμίδας φόρτισης, για κατανόηση και επιβεβαίωση της ορθής λειτουργίας της διάταξης. Στη συνέχεια, παρουσιάζεται αναλυτικά η διαδικασία σχεδιασμού του φορτιστή. Έτσι, καθορίζονται οι προδιαγραφές και τα χαρακτηριστικά του, ο οποίος πρόκειται να χρησιμοποιηθεί για τους συσσωρευτές του ηλεκτρικού οχήματος «Buggy» του Εργαστηρίου. Το επόμενο βήμα αποτελεί η προσομοίωση της υπό μελέτη διάταξης στο λογισμικό προσομοίωσης κυκλωμάτων Simulink του Matlab. Με τον τρόπο αυτό επιτυγχάνεται επιβεβαίωση της θεωρητικής ανάλυσης που προηγήθηκε. Τέλος, παρουσιάζεται το πρακτικό σκέλος της εργασίας, που εκπονήθηκε στα πλαίσια του προγράμματος «Πρακτικής Άσκησης Φοιτητών του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών», στις βιομηχανικές εγκαταστάσεις της εταιρίας APTRONIC HELLAS, η οποία εξειδικεύεται στην παροχή προσαρμοσμένων λύσεων στα ηλεκτρονικά ισχύος. Πέρα από την εξοικείωση με το εργασιακό περιβάλλον, πραγματοποιήθηκε το σχηματικό και το τυπωμένο κύκλωμα του φορτιστή στο λογισμικό Zuken Cadstar. / The present diploma thesis deals with the design and implementation of a charger which is used for the batteries of a small electric vehicle. This device has nominal power of 1kW and is the medium that connects the batteries to the power grid. This work was developed in the Laboratory of Electromechanical Energy Conversion at the Department of Electrical Engineering and Computer Science of the Polytechnic School in the University of Patras. The objective is to implement a charger which has high efficiency and simultaneously provides safety to the user. However, it is crucial not to overload the network by injecting higher harmonics. Thus, the design included the application of a Power Factor Correction Technique. The Power Electronic Converter which is used is a Flyback Topology (Buck-Boost Converter). Moreover, it disposes of an active surge suppression circuit (Snubber) and isolation transformer. Initially, the benefits of electrification are analysed. Then, the theoretical analysis of this device is provided so that its proper function is guaranteed. In addition, the design process of the charger is presented in detail. Consequently, all the specifications and features for the charger, which will be used for the batteries of the electric vehicle «Buggy» of the Laboratory, are determined. The next step in this thesis is the simulation of the device with Simulink of Matlab. In this way, the theoretical analysis is confirmed. Finally, the practical part of the work is presented. It was carried out during an Internship in APTRONIC HELLAS (a Phoenix Contact Company). Many projects are conducted at the industrial facilities of this company, which specializes in providing solutions in Power Electronics. Besides work experience, a schematic and a printed circuit for the charger was designed in Zuken Cadstar.
19

Behavior-based power management in autonomous mobile robots

Fetzek, Charles A. January 2008 (has links)
Thesis (M.S.)--Air Force Institute of Technology, 2008. / Title from title page of PDF document (viewed on: Dec 10, 2009).
20

Techno-economic analysis of retrofitting existing fuel stations with DC fast chargers along with solar PV and energy storage with load flow analysis

Ghosh, Nilanshu January 2020 (has links)
The increasing number of electric vehicles (EVs) in the transport sector has rendered the conventional fuel-based vehicles obsolete along with the fuel filling stations. With the growth in EVs, there has been an increase in the public charging infrastructure with fast charging equipment being used to charge the EVs in least possible time and also address the issue of ‘range anxiety’ among the EV owners. Many countries like South Korea and Germany has seen policies being implemented to install fast chargers for EVs in existing fuel filling stations. This study aims conduct a techno-economic feasibility to analyse the potential of implementing Electric Vehicle Supply Equipment (EVSE) with fast charging capacity into existing fuel filling stations. The potential of using solar photovoltaic system (PV) and battery storage systems (BESS) to reduce the load from the grid is also explored. Scenarios are developed considering different configurations of the EVSE, PV and BESS and an in-depth economic analysis is conducted to analyse the economic feasibility of the configurations. The impact on the electricity grid is also analysed in this thesis by conducting a load flow analysis on the CIGRE Low voltage network for Europe using Python.The proposed design enables selection of techno-economically feasible configurations of EVSE, BESS and PV. The results of the design are explained with the UK as a case study. It is observed that the configurations with 3 EVSE, BESS and 8 hours and the configuration with 3 EVSE, 1 BESS and 1 PV system for 8 hours of operation are economically viable. The proposed design shows that though the connection cost is the dominant factor affecting the feasibility, use of BESS with or without PV can reduce the connection cost by almost 90% depending on the number of BESS. Load flow analysis is conducted for the different configurations of EVSE, BESS and PV on the CIGRE LV network on Pandapower in Python. The results indicate that the existing network needs to be reinforced to facilitate the connection of EV fast chargers into the grid. Upgrading the network cables and increasing the slack voltage to a value of 1.05 or 1.1 Volts per unit, are the two strategies that have been suggested in this study to prevent any undervoltage that may occur as a result of connecting the EVSE to the electricity grid. The simulations conducted for the two strategies highlight that by implementing these strategies into the electricity grid network, the undervoltage issues in the transmission network can be mitigated. / Det ökande antalet elfordon inom transportsektorn har gjort de konventionella bränslebaserade fordonen föråldrade tillsammans med bränslepåfyllningsstationerna. Med ökningen av elbilar har det skett en ökning av den offentliga laddningsinfrastrukturen med snabbladdningsutrustning som används för att ladda elbilarna på åtminstone möjlig tid och också ta itu med frågan om ’range anxiety’ bland elägare. Många länder som Sydkorea och Tyskland har sett politik införas för att installera snabbladdare för elbilar i befintliga bensinstationer. Denna studie syftar till att genomföra en teknisk-ekonomisk genomförbarhet för att analysera potentialen för att implementera elfordonstillförselutrustning (EVSE) med snabb laddningskapacitet i befintliga bensinstationer. Potentialen med att använda solcellssystem (PV) och batterilagringssystem (BESS) för att minska belastningen från nätet undersöks också. Scenarier utvecklas med beaktande av olika konfigurationer av EVSE, PV och BESS och en djupgående ekonomisk analys genomförs för att analysera konfigurationernas ekonomiska genomförbarhet. Effekten på elnätet analyseras också i denna avhandling genom att genomföra en belastningsflödesanalys på CIGRE lågspänningsnät för Europa med Python.Den föreslagna designen möjliggör val av tekno-ekonomiskt genomförbara konfigurationer av EVSE, BESS och PV. Resultaten av designen förklaras med Storbritannien som en fallstudie. Det observeras att konfigurationerna med 3 EVSE, BESS och 8 timmar och konfigurationen med 3 EVSE, 1 BESS och 1 PV-system för 8 timmars drift är ekonomiskt lönsamma. Den föreslagna designen visar att även om anslutningskostnaden är den dominerande faktorn som påverkar genomförbarheten, kan användning av BESS med eller utan solceller minska anslutningskostnaden med nästan 90% beroende på antalet BESS. Lastflödesanalys utförs för de olika konfigurationerna av EVSE, BESS och PV på CIGRE LV-nätverket på Pandapower i Python. Resultaten visar att det befintliga nätverket måste förstärkas för att underlätta anslutningen av EV-snabbladdare till nätet. Uppgradering av nätverkskablarna och ökning av spänningen till 1,05 eller 1,1 volt per enhet är de två strategier som har föreslagits i denna studie för att förhindra underspänning som kan uppstå till följd av att EVSE ansluts till elnätet. Simuleringarna för de två strategierna lyfter fram att genom att implementera dessa strategier i elnätet kan underspänningsfrågorna i överföringsnätet mildras.

Page generated in 0.0495 seconds