• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigating the Influence of CHD1 on Gene Expression in Drosophila Melanogaster Using Position Effect Variegation

Bui, Phuongngan Thi 01 January 2015 (has links)
Position Effect Variegation (PEV) is the mosaic expression of a gene that has been moved out of its optimal environment and into a different area on the chromosome. Changing a gene’s environment may have profound effects on its eligibility for proper expression, which is a complicated process regulated by many factors. The PEV phenomenon is used as an assay to study gene expression as regulated by chromatin structure. In this study, the Drosophila melanogaster white gene was used as a reporter to study the various effects of CHD1, a chromatin regulating factor, on PEV gene expression. Inspired by preliminary data generated by the Armstrong Lab where overexpression of CHD1 resulted in suppression of gene silencing of the brown gene and loss of CHD1 resulted in enhancement of gene silencing, this study uses PEV as an assay to examine whether loss of function chd1 mutant alleles function dominantly to enhance silencing of the white gene when it is placed in a repressive chromatin environment. Surprisingly, I found that a chd1 loss of function mutant allele dominantly suppressed gene silencing (meaning I saw an increase in gene expression), suggesting that the CHD1 protein is normally required for effective silencing. The results demonstrated that CHD1 is a dominant modifier of PEV gene expression. CHD1 significantly modifies gene expression by suppressing silencing of the white gene inserted into pericentric heterochromatin on the second and fourth chromosomes and an insertion into the medial region of the fourth chromosome, while it shows no significant modification of the white gene inserted into telomeric heterochromatin of the fourth chromosome. Together, these intriguing results regarding varying gene expression at different chromosomal sites show that PEV is a dynamic phenomenon meriting further research and studying the effects of CHD1 as a modifier of PEV may be influential to understanding the mechanism and characteristics of gene expression.
2

Etude du mécanisme d'action des facteurs de remodelage de la chromatine, à l'échelle de la molécule unique.

Praly, Elise 19 June 2009 (has links) (PDF)
Chez les eucaryotes, l'ADN s'associe à des octamères d'histones pour former une structure nucléoprotéique dense appelée chromatine. Sous cette forme compacte, la chromatine agit comme une barrière topologique empêchant des facteurs de transcription par exemple, d'interagir avec l'ADN. Il va donc être essentiel de moduler la structure de la chromatine pour réguler l'accès à l'ADN et donc l'expression des gènes. L'une des stratégies adoptées, implique l'intervention de complexes multi-protéiques, appelés facteurs de remodelage de la chromatine, qui utilisent l'énergie issue de l'hydrolyse de l'ATP pour perturber le positionnement des octamères d'histones par rapport à l'ADN. Les mécanismes sous-jacents, éventuellement variés, sont encore méconnus.<br />Nous utilisons ici un dispositif de pinces magnétiques pour sonder l'action de différents facteurs de remodelage (RSC, yISW1a et CHD1) sur une molécule d'ADN nue. Nous montrons que ces complexes ont des comportements différents vis-à-vis de ce substrat : en l'absence d'ATP, yISW1a et CHD1 s'accrochent à l'ADN de manière coopérative et réduisent son extension bout-à-bout. En présence d'ATP, RSC est capable de former de larges boucles d'ADN, sous-enroulées, dont la taille dépend de la force et de la concentration en ATP. Nous souhaitons maintenant sonder l'action de ces facteurs sur un substrat nucléosomal. Dans ce but, nous avons mis au point un protocole efficace pour préparer un substrat mono-nucléosomal, manipulable en pinces magnétiques, et nous avons défini une procédure pour s'assurer de la présence du nucléosome. Ce substrat de choix va nous servir de base pour l'étude de l'action des facteurs de remodelage de la chromatine.
3

Role of Histone Metabolism and Chromatin Structure in DNA Repair

Kari, Vijaya Lakshmi 24 June 2013 (has links)
No description available.
4

Development of Novel High-Resolution Melting (HRM) Assays for Gender Identification of Caribbean Flamingo (Phoenicopterus ruber ruber) and other Birds

Chapman, Alexandra 14 March 2013 (has links)
Unambiguous gender identification (ID) is needed to assess parameters in studies of population dynamics, behavior, and evolutionary biology of Caribbean Flamingo (Phoenicopterus ruber ruber) and other birds. Due to its importance for management and conservation, molecular (DNA-based) avian gender ID assays targeting intron-size differences of the Chromosome Helicase ATPase DNA Binding (CHD) gene of males (CHD-Z) and females (CHD-W) have been developed. Male (ZZ) and female (WZ) genotypes are usually scored as size polymorphisms through agarose or acrylamide gels. For certain species, W-specific restriction sites or multiplex polymerase chain-reaction (PCR) involving CHD-W specific primers are needed. These approaches involve a minimum of three steps following DNA isolation: PCR, gel electrophoresis, and photo-documentation, which limit high throughput scoring and automation potential. In here, a short amplicon (SA) High-resolution Melting Analysis (HRMA) assay for avian gender ID is developed. SA-HRMA of an 81-Base Pair (bp) segment differentiates heteroduplex female (WZ) from homoduplex male (ZZ) genotypes by targeting Single-nucleotide Polymorphisms (SNPs) instead of intron-size differences between CHD-Z and CHD-W genes. To demonstrate the utility of the approach, the gender of Caribbean Flamingo (P. ruber ruber) (17 captive from the Dallas Zoo and 359 wild from Ria Lagartos, Yucatan, Mexico) was determined. The assay was also tested on specimens of Lesser Flamingo (P. minor), Chilean Flamingo (P. chilensis), Saddle-billed Stork (Ephippiorhynchus senegalensis), Scarlet Ibis (Eudocimus ruber), White-bellied Stork (Ciconia abdimii), Roseate Spoonbill (Platalea ajaja), Marabou Stork (Leptoptilos crumeniferus), Greater Roadrunner (Geococcyx californianus), and Attwater's Prairie Chicken (Tympanuchus cupido attwateri). Although the orthologous 81 bp segments of Z and W are highly conserved, sequence alignments with 50 avian species across 15 families revealed mismatches affecting one or more nucleotides within the SA-HRMA forward or reverse primers. Most mismatches were located along the CHD-Z gene that may generate heteroduplex curves and thus gender ID errors. For such cases, taxon and species-specific primer sets were designed. The SA-HRMA gender ID assay can be used in studies of avian ecology and behavior, to assess sex-associated demographics and migratory patterns, and as a proxy to determine the health of the flock and the degree by which conservation and captive breeding programs are functioning.
5

Brood sex ratio and sex differences in Tengmalm’s owl : (Aegolius funereus)

Hipkiss, Tim January 2002 (has links)
<p>Males and females differ in morphology and behaviour, so that selection acts differently on the two sexes. This changes the relative reproductive success of males and females, and it is beneficial for parents to bias the sex ratio of their broods in favour of the sex with the best survival and breeding prospects. Differences between the sexes and brood sex ratio in Tengmalm’s owl (Aegolius funereus) in northern Sweden were investigated, using a molecular sexing technique based on PCRamplification of sex-linked CHD1 genes. Among owls caught during autumn migration, females were commoner than males, especially within juveniles. However, in contrast to earlier studies, it was shown that adult males sometimes undertake migratory movements indicatory of nomadism. Measurements of these owls revealed that sexual size dimorphism in Tengmalm’s owl is not as great as previously reported from studies carried out during the breeding season. Females were slightly larger (4% by mass) than males, probably owing to the different roles of males and females during breeding, when this dimorphism is greater. The size difference between male and female nestlings was found to be similar to that for adults in autumn, and to investigate whether this led to differential mortality, the effect of supplementary feeding on mortality of male and female nestlings was studied. Supplementary feeding reduced male mortality when vole abundance was low, and it was concluded that larger female nestlings out-competed their smaller brothers, who then suffered increased mortality when food was scarce. Recruitment of male nestlings into the breeding population declined with decreasing food supply at the time of fledging, a pattern not observed in females. Juvenile males were therefore more vulnerable to food shortage than females, both in the nest and after fledging. Mean brood sex ratio varied significantly among years characterized by different phases of the vole cycle and associated vole abundance. Broods were male-biased (63% males) in a year when the food supply was favourable during spring and summer, neutral (50%) in a year with an intermediate food supply, and female-biased (35% males) in a year when food was in short supply. Parents appeared to adaptively adjust the sex ratio of their broods according to the relative mortality risk and reproductive potential of sons and daughters.</p>
6

Brood sex ratio and sex differences in Tengmalm’s owl : (Aegolius funereus)

Hipkiss, Tim January 2002 (has links)
Males and females differ in morphology and behaviour, so that selection acts differently on the two sexes. This changes the relative reproductive success of males and females, and it is beneficial for parents to bias the sex ratio of their broods in favour of the sex with the best survival and breeding prospects. Differences between the sexes and brood sex ratio in Tengmalm’s owl (Aegolius funereus) in northern Sweden were investigated, using a molecular sexing technique based on PCRamplification of sex-linked CHD1 genes. Among owls caught during autumn migration, females were commoner than males, especially within juveniles. However, in contrast to earlier studies, it was shown that adult males sometimes undertake migratory movements indicatory of nomadism. Measurements of these owls revealed that sexual size dimorphism in Tengmalm’s owl is not as great as previously reported from studies carried out during the breeding season. Females were slightly larger (4% by mass) than males, probably owing to the different roles of males and females during breeding, when this dimorphism is greater. The size difference between male and female nestlings was found to be similar to that for adults in autumn, and to investigate whether this led to differential mortality, the effect of supplementary feeding on mortality of male and female nestlings was studied. Supplementary feeding reduced male mortality when vole abundance was low, and it was concluded that larger female nestlings out-competed their smaller brothers, who then suffered increased mortality when food was scarce. Recruitment of male nestlings into the breeding population declined with decreasing food supply at the time of fledging, a pattern not observed in females. Juvenile males were therefore more vulnerable to food shortage than females, both in the nest and after fledging. Mean brood sex ratio varied significantly among years characterized by different phases of the vole cycle and associated vole abundance. Broods were male-biased (63% males) in a year when the food supply was favourable during spring and summer, neutral (50%) in a year with an intermediate food supply, and female-biased (35% males) in a year when food was in short supply. Parents appeared to adaptively adjust the sex ratio of their broods according to the relative mortality risk and reproductive potential of sons and daughters.

Page generated in 0.0252 seconds