• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 6
  • 6
  • Tagged with
  • 44
  • 44
  • 13
  • 9
  • 7
  • 7
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Development and Application of a Chemical Degradation Model for Reinforced Electrolyte Membranes in Polymer Electrolyte Membrane Fuel Cells

Kundu, Sumit 05 September 2008 (has links)
Fuel cells are electrochemical devices being developed for a variety of consumer applications including homes and vehicles. Before customers will accept this technology fuel cells must demonstrate suitable durability and reliability. One of the most important parts of a fuel cell stack is the polymer electrolyte membrane (PEM). This layer is responsible for conducting protons from anode to cathode and acting as a gas barrier, while operating in a harsh electrochemical environment. In order to develop better and more durable membranes researchers must understand the linkage between the causes of degradation, such as specific material properties and operational conditions. One significant mode of degradation of the electrolyte membrane is through chemical degradation caused by the crossover of reactant gases leading to the formation of peroxide and ultimately radical species. These radicals are able to attack vulnerable groups in the polymer structure of the membrane. The result is membrane thinning, increased gas crossover, fluoride ion release, and voltage degradation. Considerable experimental work has been done to understand these mechanisms, although there has been no attempt to model the connection between the causes of degradation and the physical effects of degradation on the electrolyte membrane. Such a model can be used as a valuable tool when evaluating different degradation mechanisms, developing stronger materials, and enable estimation of the influence of fuel cell operation and system design on degradation. This work presents the development and application of a dynamic semi-mechanistic chemical degradation model for a reinforced membrane in a polymer electrolyte membrane fuel cell. The model was developed using single cell testing with Gore™ PRIMEA® series 5510 catalyst coated membranes under open circuit voltage (OCV) conditions. Such conditions are useful for accelerated testing since they are believed to enhance chemical degradation in membranes since reactant gas partial pressures are at their maximum. It was found that the electrolyte layer closer to the cathode catalyst preferentially degraded. Furthermore, cumulative fluoride release curves for the anode and cathode began to reach plateaus at similar times. The developed model proposes that as the cathode electrolyte layer is degraded, fluoride release slows due to a lack of reactants since the inert reinforcement layer creates a barrier between the cathode and anode electrolyte layers. It is also believed that all fluoride release originates at the degradation site at the cathode. By fitting key parameters, the fluoride release trends were simulated. The proposed model links material properties such as the membrane gas permeability, membrane thickness, and membrane reactivity, as well as operating parameters such as hydrogen partial pressure and relative humidity to fluoride release, thickness change, and crossover. Further investigation into degradation at OCV operation and different relative humidity conditions showed that initial hydrogen crossover measurements were a good indicator of degradation rate over long testing times. The proposed semi-mechanistic model was able to best model the results when using a second order dependence on the hydrogen crossover term. In all cases there was some discrepancy between the model and experimental data after long times. This was attributed to the onset and contribution of anode side degradation. The effect of drawing current on fluoride release was also investigated. Experimental results showed that with increasing current density the fluoride release rate decreased. Using the developed semi-mechanistic model it was proposed that a decrease in hydrogen crossover was primarily responsible for the reduction in chemical degradation of the membrane. A macro-homogeneous model of the anode catalyst layer was used to show that a reduction in hydrogen concentration through the catalyst layer when a current is drawn is a possible reason for the reduction in degradation. Finally the model was applied to three different dynamic drive cycles. The model was able to show that over different drive cycles, the fuel cell will experience different degradation rates. Thus the developed model can be used as a potential tool to evaluate degradation in systems.
22

Development and Application of a Chemical Degradation Model for Reinforced Electrolyte Membranes in Polymer Electrolyte Membrane Fuel Cells

Kundu, Sumit 05 September 2008 (has links)
Fuel cells are electrochemical devices being developed for a variety of consumer applications including homes and vehicles. Before customers will accept this technology fuel cells must demonstrate suitable durability and reliability. One of the most important parts of a fuel cell stack is the polymer electrolyte membrane (PEM). This layer is responsible for conducting protons from anode to cathode and acting as a gas barrier, while operating in a harsh electrochemical environment. In order to develop better and more durable membranes researchers must understand the linkage between the causes of degradation, such as specific material properties and operational conditions. One significant mode of degradation of the electrolyte membrane is through chemical degradation caused by the crossover of reactant gases leading to the formation of peroxide and ultimately radical species. These radicals are able to attack vulnerable groups in the polymer structure of the membrane. The result is membrane thinning, increased gas crossover, fluoride ion release, and voltage degradation. Considerable experimental work has been done to understand these mechanisms, although there has been no attempt to model the connection between the causes of degradation and the physical effects of degradation on the electrolyte membrane. Such a model can be used as a valuable tool when evaluating different degradation mechanisms, developing stronger materials, and enable estimation of the influence of fuel cell operation and system design on degradation. This work presents the development and application of a dynamic semi-mechanistic chemical degradation model for a reinforced membrane in a polymer electrolyte membrane fuel cell. The model was developed using single cell testing with Gore™ PRIMEA® series 5510 catalyst coated membranes under open circuit voltage (OCV) conditions. Such conditions are useful for accelerated testing since they are believed to enhance chemical degradation in membranes since reactant gas partial pressures are at their maximum. It was found that the electrolyte layer closer to the cathode catalyst preferentially degraded. Furthermore, cumulative fluoride release curves for the anode and cathode began to reach plateaus at similar times. The developed model proposes that as the cathode electrolyte layer is degraded, fluoride release slows due to a lack of reactants since the inert reinforcement layer creates a barrier between the cathode and anode electrolyte layers. It is also believed that all fluoride release originates at the degradation site at the cathode. By fitting key parameters, the fluoride release trends were simulated. The proposed model links material properties such as the membrane gas permeability, membrane thickness, and membrane reactivity, as well as operating parameters such as hydrogen partial pressure and relative humidity to fluoride release, thickness change, and crossover. Further investigation into degradation at OCV operation and different relative humidity conditions showed that initial hydrogen crossover measurements were a good indicator of degradation rate over long testing times. The proposed semi-mechanistic model was able to best model the results when using a second order dependence on the hydrogen crossover term. In all cases there was some discrepancy between the model and experimental data after long times. This was attributed to the onset and contribution of anode side degradation. The effect of drawing current on fluoride release was also investigated. Experimental results showed that with increasing current density the fluoride release rate decreased. Using the developed semi-mechanistic model it was proposed that a decrease in hydrogen crossover was primarily responsible for the reduction in chemical degradation of the membrane. A macro-homogeneous model of the anode catalyst layer was used to show that a reduction in hydrogen concentration through the catalyst layer when a current is drawn is a possible reason for the reduction in degradation. Finally the model was applied to three different dynamic drive cycles. The model was able to show that over different drive cycles, the fuel cell will experience different degradation rates. Thus the developed model can be used as a potential tool to evaluate degradation in systems.
23

The mechanism of cerium (IV) oxidation of glucose and cellulose

Pottenger, Charles R. 01 January 1968 (has links)
No description available.
24

The distribution of sulfur throughout the wool structure and the effect of dilute alkali on that distribution.

Shimp, Joseph Way 01 January 1944 (has links)
No description available.
25

Observations relative to the physical and chemical changes taking place in the cooking of new white rags

Laughlin, Edwin R. 06 1900 (has links)
No description available.
26

A study on ozone modification of lignin in alkali-fiberized wood

Lyse, Thomas E. (Thomas Edward) 01 January 1979 (has links)
No description available.
27

A study of some reaction rates in the homogeneous system water-sodium hydroxide-cellobiose

MacLaurin, Donald James 01 January 1969 (has links)
The broad objective of the study was to gain further knowledge of the reaction rates and mechanisms by which carbohydrates, particularly 3(l-4) glucans, are transformed and degraded in aqueous alkaline solutions. While the isomerization, epimerization, and degradation of carbohydrates has been extensively studied and reviewed, there are practically no kinetic data available on these important reactions due apparently to a lack of reasonable procedures for assay of the reaction systems. Because of the important theoretical, physiological, and industrial implications of these reactions, it appeared useful to have kinetic data on them and concomitantly thus to develop a method for obtaining such data. The specific problem selected for study from this broad area was the measurement of reaction rates prevailing in the homogeneous system: cellobiose-l molar sodium hydroxide-water at 22°C. and to derive-the related rate constants from the reaction rate expressions and then to assess current understanding of these reactions in light of the kinetic data obtained.
28

Alkaline degradation of methyl beta-D-glucopyranoside and methyl 2-O-methyl-beta-D-glucopyranoside

Nault, James J. 01 January 1979 (has links)
No description available.
29

A Study on the Durability of Gasket Materials in the PEMFC

Lin, Chih-Wei 03 June 2011 (has links)
Proton Exchange Membrane (PEM) fuel cell stack requires gaskets and seals in each cell to keep the hydrogen and air/oxygen within their respective regions. The stability of the gaskets is critical to the operating life as well as the electrochemical performance of the fuel cell. Chemical degradation of five elastomeric gasket materials in a simulated and an aggressive accelerated fuel cell solution at PEM operating temperature for up to 63 weeks was investigated in this work. The five materials are Copolymeric Resin (CR), Liquid Silicone Rubber (LSR), Fluorosilicone Rubber (FSR), Ethylene Propylene Diene Monomer Rubber (EPDM), and Fluoroelastomer Copolymer (FKM). In order to assess the durability of the materials, observation of chemical degradation level, dynamic mechanical analysis, and micro-indentation test were adopted in this study. This experimental result showed that the influence of the chemical reaction could affect the material surface condition. Also, the chemical reaction could affect material¡¦s mechanical properties had been changed over the soaking time. By considering the level of chemical degradation and mechanical properties, the experimental results showed that EPDM is recommended as the best choice of sealing material for using in a PEMFC.
30

Couplage dégradation chimique - comportement en compression du béton

Nguyen, Viet-Hung 04 October 2005 (has links) (PDF)
Ce travail de thèse se situe dans le contexte du comportement à long terme des bétons dans les stockages de déchets nucléaires. L'objectif est de modéliser le comportement couplé en compression<br />avec la dégradation chimique. Dans la première partie, une campagne d'essai est effectuée où la cinétique de lixiviation chimique et les propriétés mécaniques ainsi que le comportement couplé du béton sont mis en vidence. Une méthode de lixiviation accélérée est choisie qui permet de dégrader rapidement les<br />éprouvettes. Dans la deuxime partie, le couplage chimie - mécanique est décrit. D'une part une approche simplifiée de la lixiviation du calcium est utilisée. En tenant compte de la présence des granulats, une approche par homogénéisation utilisant<br />un développement asymptotique est présentée. Elle permet de décrire la tortuosité due à la morphologie, la fraction volumique des granulats ainsi qu'à la disposition des granulats.<br />D'autre part, plusieurs modélisations mécaniques peuvent rendre compte du comportement mécanique du béton après lixiviation. Le modèle élastoplastique endommageable permet notamment de retrouver<br />les déformations permanentes observées dans les essais. La résolution du problème non linéaire est réalisée dans le contexte de la méthode des éléments finis. Les simulations numériques sont comparées avec les résultats expérimentaux et montrent un bon<br />accord. Enfin un exemple d'application au cas d'un tunnel de stockage est présenté.

Page generated in 0.1121 seconds