• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 6
  • 6
  • Tagged with
  • 44
  • 44
  • 13
  • 9
  • 7
  • 7
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Investigation of Volatile Products from Wood Pyrolysis

Gade, Prabhavathi 01 December 2010 (has links)
In this research we are following the thermo-chemical degradation of wood in the absence of oxygen. The objectives are to evaluate the influence of heating rates on pyrolysis products obtained from wood pyrolysis and to evaluate the influence of acid pre-treatment on pyrolysis products. Depending on the wood heating rates, pyrolysis can be categorized as Flash pyrolysis, Fast pyrolysis, and Slow pyrolysis. We have evaluated the volatile products obtained at different heating rates and the volatile products obtained from sulfuric acid pre-treatment by using gas chromatography- mass spectrometry (GC-MS). We have also performed thermo-gravimetric analysis (TGA) of raw wood samples and sulfuric acid pre-treated wood samples of Yellow Pine to determine the changes in weight in relation to change in temperature. Our results indicated that by using the Flash, Fast, and Slow heating rates, the overall volatile products obtained from wood pyrolysis (i.e. the overall list of all the compounds obtained from different temperature ranges in wood pyrolysis by using different heating rates) were the same, but the volatile products obtained at different temperature ranges like Room temperature-300°C, 300°C - 400°C, and 400°C -500°C in Flash, Fast, and Slow pyrolysis were different. Most of the volatile products obtained from the pyrolysis of untreated wood were phenols. Our results also indicated that the pretreatment of wood with sulfuric acid alters the charcoal properties and releases gaseous products including furan derivatives that are useful as fuels or fuel additives. The sulfuric acid (10%) pretreatment of wood followed by slow pyrolysis produced maximum yield of charcoal, indicated by the lowest mass % decrease of 58.234. The production of furan derivatives increased by using sulfuric acid pre-treatment, which is a good improvement for the production of Furanics, the furan based biofuels. The furan based biofuels are of increasing research interest because of their significant advantages over the first generation biofuels. The thermogravimetric analysis (TGA) results indicated that the acid pre-treatment altered the decomposition rate of pyrolysis and lowered the onset of temperature for decomposition. The use of thermal degradation of plants for creating chemicals and fuels is seeing renewed interest across the globe as it is considered carbon-neutral and it uses a renewable feedstock. The information obtained from this research work will also be valued by industries, such as charcoal and activated carbon producers, which currently perform biomass pyrolysis, by allowing them to form approaches that optimize their energy use and minimize waste.
32

An investigation of the peroxyacetic acid delignification of white birch

Glinski, Allan J. 01 January 1976 (has links)
No description available.
33

The degradation of selected 1,5-anhydroalditols by molecular oxygen in alkaline media

Millard, Eugene C. (Eugene Calvin) 01 January 1976 (has links)
No description available.
34

The degradation of tall oil fatty acids by molecular oxygen in alkaline media

Mittet, Gerald R. (Gerald Raymond) 01 January 1979 (has links)
No description available.
35

The influence of cobalt ion concentration on the degradation of methyl beta-D-glucopyranoside in oxygen-alkali

Graves, David P. 01 January 1981 (has links)
No description available.
36

Application et développement de techniques d'analyse de biogéomarqueurs moléculaires : mesure de l’impact d'une perturbation argileuse sur le développement d'une tourbière du Limousin / Comparison of analytical techniques of molecular biomarkers of an ombrotrophic peatland impacted by an anthropogenic clay deposit

Younes, Khaled 20 October 2016 (has links)
Ce travail a porté sur l'étude de la structure et de la dynamique des bio(géo)macromolécules de la tourbière des Sagnes (Limousin, France) à l'aide de méthodes de dégradation chimiques et thermochimiques. La première partie a été consacrée à l'application de méthodes de dégradation chimiques pour apprécier l'impact d'une perturbation argileuse contemporaine sur la tourbière étudiée dans le cadre d'un partenariat entre l'université de Poitiers et AREVA. La tourbière présente un fonctionnement normal : activité microbienne et apport de matière organique en surface (acrotelme et mésotelme) et état du sédiment profond (catotelme) non perturbés. La seule influence notable du dépôt argileux, c'est l'augmentation apparente de l'activité de bactéries sulfato-réductrices sous sa zone de dépôt. Une seconde partie de développement analytique a tout d'abord porté sur l'évaluation de la capacité de la thermochimiolyse préparative en présence de TMAH d'analyser en un temps court et simultanément plusieurs familles de biogéomarqueurs. Pour cela, les résultats obtenus ont été comparés avec ceux obtenus par les méthodes chimiques habituellement utilisées. Compte-tenu des différents mécanismes impliqués, la thermochimiolyse apparait plus comme une méthode complémentaire. Enfin, une nouvelle méthode d'analyse des sucres (utilisation du bromure d'acyle) a été développée. Cette méthode a permis l'analyse sélective des sucres de la fraction lignocellulosique (principalement xylose et arabinose). / The purpose of this work was to study the structural composition, and consequently, dynamics of bio(geo)macromolecules of the Sagnes peatland (Limousin, France) by chemical and thermochemical degradation techniques. The first part constituted a framework between the university of Poitiers and AREVA and aimed to present a molecular inventory of a peat disturbed by a clay deposit. Results show that the clay deposit has no significant impact on the peatland evolution: microbial activity and production in the upper layer (acrotelm and mesotelm) and no apparent modification of the deepest organic sediment in the bottom layer (catotelm). Only phospholipid analysis showed an increase in sulfate-reducing bacteria under the clay deposit zone. The second part consisted of comparative studies between the most used chemical and thermochemical techniques for molecular characterization. Thermochemolysis should be viewed and used as a pertinent and a complementary method for the analysis of complex environmental systems. Finally, a novel technique using acetyl bromide allows the specific analysis of ligno-cellulosic carbohydrates (especially xylose and arabinose).
37

Morphological and Mechanical Properties of Dispersion-Cast and Extruded Nafion Membranes Subjected to Thermal and Chemical Treatments

Osborn, Shawn James 06 May 2009 (has links)
The focus of this research project was to investigate morphological and mechanical properties of both extruded and dispersion-cast Nafion® membranes. The project can be divided into three primary objectives; obtaining a fundamental understanding of the glass transition temperature of Nafion®, determining the effect of thermal annealing treatments on the morphology and mechanical properties of dispersion-cast Nafion®, and examination of dispersion-cast Nafion® subjected to an ex-situ, Fenton's chemical degradation test. Nafion®, a perfluorosulfonate ionomer, is considered a commercially successful semi-crystalline ionomer with primary applications in chlor-alkali cells and proton exchange membrane fuel cells. With the aid of dynamic mechanical analysis (DMA) and dielectric spectroscopy (DS), we were able to provide definitive evidence for a genuine glass transition in Nafion®. DMA of Nafion® samples that were partially neutralized with tetrabutylammonium counterions showed a strong compositional dependence suggesting that the β-relaxations of H+-form Nafion® and the neutralized ionomers have the same molecular origin with respect to backbone segmental motions. Building upon our previous studies of the molecular and morphological origins of the dynamic mechanical relaxations of Nafion® neutralized with a series of organic ions, the glass transition temperature of H+-form Nafion® is now confirmed to be the weak β-relaxation centered at -20 °C. Dielectric spectra also showed this transition from the perspective of dipole relaxation. The signature of cooperative long range segmental motions in dielectric spectra was seen here, as with other polymers, mainly through the excellent agreement of the β-relaxation time-temperature dependence with the Vogel-Fulcher-Tammann equation. We have also discovered that new dispersion-cast H+ form Nafion® membranes are susceptible to disintegration/dissolution when subjected to boiling methanol. In this work, we have achieved significant decreases in the percent solubility of H+-form Nafion® by either thermally annealing above 175 °C or solution-processing at 180 °C using a high boiling point solvent. Small Angle X ray Scattering (SAXS) displayed a change in the morphology of H+ form membranes with increasing annealing temperature by a shift in the crystalline scattering peak (q â 0.05 Ã 1) to lower q values. Counterion exchange of Nafion® from H+ to Na+ form had no influence on the membrane's susceptibility to disintegration in boiling methanol. In order to achieve mechanical stability in boiling methanol, Na+ form membranes had to be annealed at 275 °C for at least fifteen minutes. The SAXS data of annealed Na+ form membranes showed a dramatic decrease in crystalline order with annealing temperature, ultimately leading to the disappearance of the crystalline scattering peak after fifteen minutes at 275 °C. The onset of methanol stability with the melting of Nafion® crystallites suggests that chain entanglement is an important parameter in obtaining solvent stability. With respect to chemical stability, we performed studies aimed at examining the effects of Fenton's Reagent on the resistance to radical attack of new generation, dispersion-cast Nafion®. Changes in the 19F solid-state NMR spectra of dispersion-cast Nafion® before and after chemical degradation via Fenton's Reagent predicts a rather random attack by ·OH and ·OOH radicals. Several membranes were also thermally annealed between 100-250 °C in an attempt to correlate crystallinity with chemical degradation kinetics of Nafion® via Fenton's Reagent. The results indicate that the effect of counterion exchange into the Na+ form was minimal, but the degree of thermal degradation had a tremendous effect on the fluoride release rate and chemical degradation kinetics. By exchanging the membranes into the Na+ form, thermal degradation was avoided, allowing us to study the role of crystallinity as a function of fluoride release. Ultimately, Nafion® crystallinity was deemed an important factor in deterring peroxide radical attack. As the percent crystallinity decreased with annealing temperature, the fluoride concentration in the resulting Fenton's media increased accordingly, indicating that the amorphous regions of the polymer are more susceptible to chemical degradation via peroxide radical attack. / Ph. D.
38

The interaction between acetovanillone and methyl beta-D-glucopyranoside in an oxygen-alkali system

Freiberg, James D. 01 January 1980 (has links)
No description available.
39

Effects of Cell Wall Structure on Tensile Properties of Hardwood : Effect of down-regulation of lignin on mechanical performance of transgenic hybrid aspen. Effect of chemical degradation on mechanical performance of archaeological oak from the Vasa ship.

Bjurhager, Ingela January 2011 (has links)
Wood is a complex material and the mechanical properties are influencedby a number of structural parameters. The objective of this study has been toinvestigate the relationship between the structure and the mechanical propertiesof hardwood. Two levels were of special interest, viz. the cellular structureand morphology of the wood, and the ultra-structure of the cell wall. In thenext step, it was of interest to examine how the mechanical properties ofhardwood change with spontaneous/induced changes in morphology and/orchemical composition beyond the natural variation found in nature. Together, this constituted the framework and basis for two larger projects,one on European aspen (Populus tremula) and hybrid aspen (Populus tremulax Populus tremuloides), and one on European oak (Quercus robur). Amethodology was developed where the concept of relative density and compositemechanics rules served as two useful tools to assess the properties ofthe cell wall. Tensile testing in the longitudinal direction was combined withchemical examination of the material. This approach made it possible to revealthe mechanical role of the lignin in the cell wall of transgenic aspen trees,and investigate the consequences of holocellulose degradation in archaeologicaloak from the Vasa ship. The study on transgenic aspen showed that a major reduction in lignin inPopulus leads to a small but significant reduction in the longitudinal stiffness.The longitudinal tensile strength was not reduced. The results are explainableby the fact that the load-bearing cellulose in the transgenic aspen retained itscrystallinity, aggregate size, microfibril angle, and absolute content per unitvolume. The results can contribute to the ongoing task of investigating andpinpointing the precise function of lignin in the cell wall of trees. The mechanical property study on Vasa oak showed that the longitudinaltensile strength is severely reduced in several regions of the ship, andthat the reduction correlates with reduced average molecular weight of theholocellulose. This could not have been foreseen without a thorough mechanicaland chemical investigation, since the Vasa wood (with exception fromthe bacterially degraded surface regions) is morphologically intact and witha micro-structure comparable to that of recent oak. The results can be usedin the ongoing task of mapping the condition of the Vasa wood. / QC 20110420
40

Dégradation chimique et biologique de neuf contaminants émergents dans les eaux de surfaces et les effluents primaires d’eaux usées municipales

Cormier, Guillaume 04 1900 (has links)
Un protocole inspiré du test de simulation 309 de l’Organisation de coopération et de développement économiques (OCDE) nous a permis de mesurer la dégradation chimique (excluant la photolyse) dans des eaux de surface de même que la dégradation chimique et biologique de neuf contaminants émergents dans l’effluent d’un décanteur primaire d’eau usée municipale. Les données étaient compatibles avec le modèle de cinétique de pseudo ordre un. Les résultats démontrant une persistance de plus d’un an dans les eaux de surface et de 71 jours dans l’effluent du décanteur primaire suggèrent que les dégradations chimique et biologique ne contribuent pas significativement à la diminution de: atrazine, déséthylatrazine, carbamazépine et diclofénac dans la phase aqueuse des systèmes testés. Les autres composés se sont dégradés à différents niveaux. Le 17ß-estradiol ainsi que l’éthinylestradiol, la noréthindrone, la caféine et le sulfaméthoxazole ont tous été sujet à la dégradation biologique dans les effluents du décanteur primaire d’eau usée avec des constantes de dégradation k et des demi-vies t1/2 mesurées allant respectivement de 0.0082 à 0.59 j-1 et de 1.2 à 85 jours. Les paramètres de cinétique mesurés peuvent être combinés aux concentrations typiques des composés à l’étude dans un décanteur primaire d’eau usée pour y calculer leur vitesse de dégradation. Cependant, puisque les décanteurs primaires dans les usines de traitement d’eaux usées ont généralement des temps de résidence de quelques heures seulement, il est improbable que les neufs contaminants émergents à l’étude diminuent significativement par ces processus durant leur passage dans le compartiment. / A protocol inspired by the OECD 309 simulation test allowed us to measure the chemical (excluding photolysis) degradation in surface waters as well as the chemical and biological degradation potential of 9 emerging contaminants in urban primary settling tank (PST) effluents. The data confirmed that a pseudo first order kinetic model provided a good fit. The results suggest that chemical and biological degradation will not significantly contribute to the disappearance of atrazine, desethylatrazine, carbamazepine and sulfamethoxazole in the aqueous phase of the tested systems given the reported persistency of more than a year in surface waters and 71 days in PST effluents. Other compounds were more easily degraded and 17ß-estradiol, ethinylestradiol, norethindrone, caffeine and sulfamethoxazole were all amenable to biological degradation in PST effluents, with measured degradation rate constants k and half-lives ranging respectively from 0.0082-0.59 d-1 and 1.2-85 days. Since PSTs in WWTPs generally have a water residence time of a few hours and considering the typical concentrations of such ECs’ in those compartments, it is unlikely that significant disappearance will occur during their passage through the PST.

Page generated in 0.1413 seconds