1 |
Root-to-shoot communication in Ricinus communis L. plants subjected to drying a part of the root systemJokhan, Anjeela Devi January 1997 (has links)
This thesis examines the role of root-sourced abscisic acid in the regulation of stomatal closure and leaf expansion in response to drying approximately half of the roots of Ricinus communis L. plants. Drying part of the root system of Ricinus communis promoted stomatal closure and slowed leaf expansion in the absence of any disturbances in shoot water relations, implying the involvement of chemical rather than hydraulic signalling. Initially root-sourced ABA was believed to be responsible for these responses. Delivery rates (concentration x flow rate) of ABA out of the drying roots were calculated which took into account the effect of dilution on solutes in the well-watered and droughted plants due to different transpiration rates in these plants. The delivery term was further modified to account for the differences in sizes of their roots and shoots. ABA delivery out of the roots of plants with drying upper roots increased within the first 12 h and was maintained over the next 3 days. However, significant decline in stomatal apertures and leaf elongation occurred only 2 - 3 days after root drying began. During the early stages of drying upper roots (2-3 d) xylem sap pH, and delivery rate of nitrate and l-aminocyclopropane-l-carboxylic acid were little changed, while hydraulic conductivity of the root system as a whole was reduced approximately 25%, and ABA accumulation (synthesis?) in roots increased. Increased ABA levels in phloem sap was not found, suggesting no enhanced re-cycling of ABA between shoots and roots was taking place in the plants during this time. Antitranspirant activity in xylem sap of droughted plants that was not ABA was sought as a possible cause of stomatal closure. However, convincing evidence of such activity was not found. Examination of ABA output by roots into shoot compared to that entering lamina of the 5th leaf in the canopy showed the attenuation of the signal as transpiration fluid moved up the plant. These obs~f\ations indicate that ABA from roots is unlikely to be a highly active signal eliciting shoot responses to mild drought in Ricinus communis.
|
2 |
Modelling chemical signalling cascades as stochastic reaction diffusion systems / Modellierung chemischer Signal-Transduktions-Kaskaden als stochastische Reaktions Diffusions SystemeJentsch, Garrit 12 January 2006 (has links)
No description available.
|
3 |
Molecular and physiological characterization of grapevine rootstock adaptation to drought / Caractérisation moléculaire et physiologique de l'adaptation à la sécheresse des porte-greffes de vignePeccoux, Anthony 19 December 2011 (has links)
Dans le contexte du changement climatique, les prédictions réalisées mettent en évidence une altération de la disponibilité en eau dans de nombreuses régions viticoles ; ce qui, conjointement à l’augmentation de la population mondiale et la diminution des terres agricoles, va accroître la compétition pour l’utilisation des ressources hydriques. Par conséquent, améliorer l'adaptation à la sécheresse de la vigne est un des enjeux majeurs des prochaines années. Pour cela, une adaptation des pratiques culturales peut être proposée, en particulier le choix pertinent du matériel végétal et notamment du porte-greffe.Dans ce travail, le rôle du porte-greffe vis-à-vis de la réponse de la vigne greffée à la contrainte hydrique a été étudié, en utilisant des approches écophysiologiques, moléculaires et de modélisation. Des expériences ont été réalisées en conditions contrôlées afin d’étudier l’effet du déficit hydrique à court et long terme sur les réponses de différents porte-greffes greffés avec le même scion.Le modèle écophysiologique a démontré que les porte-greffes affectent l'ouverture stomatique du greffon par des processus coordonnés incluant les caractéristiques racinaires, les signaux hydrauliques et les signaux chimiques lors d’un déficit hydrique à court terme. La conductance stomatique, le taux de transpiration et la conductance hydraulique des feuilles ont été plus élevés en conditions irriguées et de stress hydriques modérés chez le génotype résistant à la sécheresse (110 Richter) par rapport au génotype sensible à la sécheresse (Vitis riparia cv. Gloire de Montpellier). Nous avons identifié plusieurs paramètres génétiques impliqués dans le contrôle de la régulation stomatique. Des différences d’architecture racinaire et de conductivité hydraulique des racines ont été identifiées entre les porte-greffes.Le déficit hydrique à long terme a entrainé des réponses adaptatives différentes entre les porte-greffes. Le génotype tolérant la sécheresse a induit une modification du diamètre des vaisseaux du xylème de la partie apicale de la racine en réponse au déficit hydrique modéré tandis que le génotype sensible n'a pas présenté de différence par rapport au contrôle. L’analyse transcriptomique des racines a identifié des gènes spécifiques aux différents génotypes, qui sont régulés en fonction du niveau de déficit hydrique. La comparaison entre les niveaux de stress et les génotypes a identifié 24 gènes intervenant dans l’interaction « traitement × génotype ». Ces gènes sont majoritairement impliqués dans le métabolisme des lipides et de la paroi cellulaire. Des courbes de réponse au déficit hydrique spécifiques aux différents génotypes ont été observées. La protection contre les dommages liés aux stress oxydatifs induits par le stress hydrique semble être un mécanisme important chez le porte-greffe résistant à la sécheresse. Le génotype sensible semble répondre au déficit hydrique par une modification des propriétés de la paroi cellulaire de la racine. / Climate change raises concerns about temporal and spatial water availability in many grape growing countries. The rapidly increasing world population and the scarcity of suitable land for agricultural food production, together with a changing climate, will increase competition with grape-producing areas for the use of land and resources. Consequently, other practices that can potentially improve water management of vineyards and water acquisition by grapevines need to be considered. Aside from canopy systems and their management, the choice of plant material is a key issue. Therefore, in the present work, the role of different rootstocks, regarding their tolerance to drought, was investigated for their potential effects on i) water uptake, ii) water transport and iii) shoot water use, using a combination of ecophysiological, modelling and transcriptomic approaches. Experiments were conducted under controlled conditions to decipher short and long term responses to drought of different rootstocks grafted with the same scion. An ecophysiological model was used to investigate the roles of rootstock genotypes in the control of stomatal aperture. Long-term steady state water-deficit conditions were used to examine the responses of i) whole plant growth, root anatomy and hydraulic properties and ii) transcriptome remodelling in the roots.Our model showed that rootstock affect stomatal aperture of the grafted scion via coordinated processes between root traits, hydraulic signals and chemical signals. Stomatal conductance, transpiration rate and leaf-specific hydraulic conductance were higher and better maintained under well-watered and moderate water-deficit conditions in the drought-tolerant genotype (110 Richter) compared to the drought-sensitive one (Vitis riparia cv. Gloire de Montpellier). We identified several genotype-specific parameters which play important roles, like root-related parameters, in the control of stomatal regulation. Additionally, root system architecture and root hydraulic properties are important constitutive traits identified between rootstocks.Long-term water-deficit induced genotype adaptive responses in the roots were evaluated. The drought-tolerant genotype exhibited a substantial shift in root tips xylem conduit diameter under moderate water-deficit while the drought-sensitive genotype did not respond. Transcriptomic analysis identified genotype-specific transcripts that are regulated by water-deficit levels. The comparison between stress levels and genotypes identified 24 significant genes in “treatment×genotype” interactions, most of them were involved in lipid metabolism and cell wall processes. These genes displayed genotype-specific water-deficit response curves. Protection against drought-induced oxidative damage was found to be an important mechanisms induced by the drought-tolerant rootstock, while the drought-sensitive one responds to water-deficit by modification of cell wall properties.
|
Page generated in 0.1057 seconds