• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Metal chalcogenides syntheses using reactions of ionic liquids

Zhang, Tao 12 June 2018 (has links) (PDF)
Ionic liquids (ILs) are nowadays a large and widely explored class of ionic compounds that melt below 100 °C. Due to their attractive properties, ILs are now of growing interests in a variety of inorganic materials preparation. However, most studies have put much focus on the description of new synthetic strategies. The chemical reactivity of ILs in the reactions is often neglected. In this dissertation, a series of metal chalcogenides were synthesized using the decompositions of ILs. The role or chemical reactivity of ILs in the reactions was demonstrated in detail. The hierarchical desert-rose-like SrTiO3 particles have been successfully prepared based on an ethylene glycol (EG) mediated one-pot IL-assisted solvothermal synthetic route. The used basic ionic liquid tetrabutylammonium hydroxide (TBAH) serves as an alkaline source and can also replace EG as the sole solvent to synthesize polyhedral SrTiO3, showing “all-in-one” solvent and reactant. A series of metal sulfides, such as Sb2S3, Bi2S3, PbS, CuS, Ag2S, ZnS, and CdS have been obtained from a choline chloride/thioacetamide based deep eutectic solvent (DES, an IL analog solvent) by a simple and general synthetic method. The reaction mainly proceeds in two steps: i) the dispersion of metal salts in the DES and the formation of a metal-DES complex, and ii) the decomposition of the metal-DES complex and formation of the final products. In addition, the chemical reactivity of phosphonium based ILs with selenium and tellurium at above 220 °C was systematically investigated by a series of dissolution experiments, tracking the solute selenium and tellurium species by nuclear magnetic resonance (NMR). NMR results clearly indicate some common decomposition mechanisms for quaternary phosphonium ILs at a relatively high temperature in the presence of selenium or tellurium. The decomposition of the quaternary phosphonium cations should proceed by an elimination of one alkyl substituent via an SN2 reaction, forming the respective trialkylphosphane selenides or tellurides in the presence of selenium or tellurium, which is then responsible for the genuine dissolution of selenium or tellurium. However, in the case of tellurium, the dissolution behavior is much more complicated compared to that of selenium. The coupling of P and Te which indicates a P–Te bond formation is only observed in the NMR spectra when a sufficient amount of tellurium (e.g. Te : IL = 1 : 1) is provided. The existence of a parallel-competitive IL decomposition route besides the SN2 reaction is regarded as the side reaction for the dissolution of tellurium. This may at least partially explain the relatively lower solubility of tellurium in phosphonium based ILs compared to that of selenium.
2

Metal chalcogenides syntheses using reactions of ionic liquids

Zhang, Tao 30 May 2018 (has links)
Ionic liquids (ILs) are nowadays a large and widely explored class of ionic compounds that melt below 100 °C. Due to their attractive properties, ILs are now of growing interests in a variety of inorganic materials preparation. However, most studies have put much focus on the description of new synthetic strategies. The chemical reactivity of ILs in the reactions is often neglected. In this dissertation, a series of metal chalcogenides were synthesized using the decompositions of ILs. The role or chemical reactivity of ILs in the reactions was demonstrated in detail. The hierarchical desert-rose-like SrTiO3 particles have been successfully prepared based on an ethylene glycol (EG) mediated one-pot IL-assisted solvothermal synthetic route. The used basic ionic liquid tetrabutylammonium hydroxide (TBAH) serves as an alkaline source and can also replace EG as the sole solvent to synthesize polyhedral SrTiO3, showing “all-in-one” solvent and reactant. A series of metal sulfides, such as Sb2S3, Bi2S3, PbS, CuS, Ag2S, ZnS, and CdS have been obtained from a choline chloride/thioacetamide based deep eutectic solvent (DES, an IL analog solvent) by a simple and general synthetic method. The reaction mainly proceeds in two steps: i) the dispersion of metal salts in the DES and the formation of a metal-DES complex, and ii) the decomposition of the metal-DES complex and formation of the final products. In addition, the chemical reactivity of phosphonium based ILs with selenium and tellurium at above 220 °C was systematically investigated by a series of dissolution experiments, tracking the solute selenium and tellurium species by nuclear magnetic resonance (NMR). NMR results clearly indicate some common decomposition mechanisms for quaternary phosphonium ILs at a relatively high temperature in the presence of selenium or tellurium. The decomposition of the quaternary phosphonium cations should proceed by an elimination of one alkyl substituent via an SN2 reaction, forming the respective trialkylphosphane selenides or tellurides in the presence of selenium or tellurium, which is then responsible for the genuine dissolution of selenium or tellurium. However, in the case of tellurium, the dissolution behavior is much more complicated compared to that of selenium. The coupling of P and Te which indicates a P–Te bond formation is only observed in the NMR spectra when a sufficient amount of tellurium (e.g. Te : IL = 1 : 1) is provided. The existence of a parallel-competitive IL decomposition route besides the SN2 reaction is regarded as the side reaction for the dissolution of tellurium. This may at least partially explain the relatively lower solubility of tellurium in phosphonium based ILs compared to that of selenium.
3

Functionality of noble-metal clusters

Bürgel, Christian 04 March 2009 (has links)
In dieser Dissertation wurden die ungewöhnlichen und einzigartigen Eigenschaften von Edelmetall-Clustern untersucht, die durch Quantum-Confinement im Sub-Nanometer-Bereich entstehen. Dabei zeigt sich, dass die chemischen und physikalischen Eigenschaften und damit die Funktionen nicht vom Festkörper abgeleitet werden können und stark von der Anzahl der Atome abhängen. Die erzielten theoretischen Ergebnisse wurden in enger Zusammenarbeit mit experimentell arbeitenden Partnergruppen erzielt. Dabei hat sich gezeigt, dass durch die enge Kooperation zwischen Theorie und Experiment ein tiefes Verständnis von fundamentalen Prozessen und den zugrunde liegenden Mechanismen erlangt werden kann. Im Rahmen dieser Dissertation wurden die Reaktivität von geladenen Goldoxid-Clustern in der Gasphase, die ultraschnelle Dynamik von Edelmetall-Clustern und deren Komplexen sowie die optischen Eigenschaften von kleinen, deponierten Silber-Clustern untersucht und damit Beiträge geliefert, die einzigartigen Eigenschaften von Edelmetall-Clustern im Zusammenhang mit der heterogenen Katalyse und Nano-Optik besser zu verstehen. / In this thesis, the unique novel properties of noble metal clusters which arise in the sub-nanometer size regime due to quantum confinement have been theoretically explored. It has been demonstrated that by adding or removing a single atom the chemical and physical properties and functionality of noble-metal clusters can strongly change. The theoretical results have been derived in close cooperation with experimental findings of partner groups demonstrating that by joint theoretical and experimental efforts thorough understanding of fundamental processes and underlying mechanisms can be achieved. This thesis addresses the reactivity of charged gas-phase gold-oxide clusters in the context of the heterogeneous gold nano-catalysis, the ultrafast dynamical properties of noble-metal clusters and their complexes, and the optical properties of silver clusters at surfaces.

Page generated in 0.0748 seconds