• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 94
  • 32
  • 13
  • Tagged with
  • 168
  • 168
  • 168
  • 168
  • 168
  • 168
  • 37
  • 26
  • 24
  • 19
  • 18
  • 17
  • 17
  • 17
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rôle du récepteur REG/EXTL3 dans l’inflammation et son implication possible dans l’ostéoarthrose (OA)

Boiro, Mamadou S. 07 1900 (has links)
L’ostéoarthrose (OA) est une maladie articulaire dont l’incidence augmente avec le vieillissement de la population. Elle se caractérise par une détérioration progressive du cartilage articulaire accompagnée du remodelage de l’os sous-chondral et du changement des tissus mous de l’articulation. La douleur et le dysfonctionnement de l’articulation affectée sont généralement attribués à l’inflammation et l’épanchement de la synovie. Plusieurs évidences indiquent que l’inflammation de la membrane synoviale contribue grandement à la pathogenèse de l’OA. En effet, la synthèse et l’expression des enzymes protéolytiques qui dégradent la matrice cartilagineuse sont régulées par de nombreuses cytokines retrouvées au sein de ce foyer inflammatoire. Deux d’entre elles, l’interleukine-1 beta (IL-1β) et le «tumor necrosis factor » alpha (TNF-α), jouent un rôle majeur dans le déclenchement de l’inflammation associée à l’OA. Ces cytokines pro-inflammatoires agissent notamment sur les synoviocytes et les chondrocytes en activant NF-κB qui, à son tour, active les gènes de cytokines. Cette boucle de régulation positive amplifie et perpétue la réponse inflammatoire. Récemment, il a été rapporté que l’activation de NF-κB par TNF-α peut être potentialisée par EXTL3, un récepteur transmembranaire ; mais le mécanisme sous-jacent de cet effet demeure inconnu. Toutefois, les niveaux important d’EXTL3 et de son ligand Reg1B chez les patients arthrosiques, laissent croire que ces protéines jouent un rôle dans le développement de l’OA. Notre objectif était d’étudier le mécanisme par lequel EXTL3 amplifie l’activation de NF-κB par TNF-α et d’examiner si ce phénomène se produit aussi avec l’IL-1β. Nous avons utilisé les cellules C28/I2, une lignée cellulaire de chondrocytes, comme modèle d’étude. Les transfections transitoires avec un vecteur d’expression, les techniques d’immunofluorescence (IF), d’immunoprécipitation (IP) et d’immunobuvardage de type Western (IB); ont été utilisées dans le cadre de diverses approches expérimentales. Les résultats obtenus par transfection ont révélé que la protéine EXTL3 potentialisait l’activation de NF-κB aussi bien par IL-1β que par TNF-α. Ce résultat signifie que la potentialisation de l’activité NF-κB par EXTL3 n’est pas spécifique à TNF-α. D’autre part, l’IP avec TNFRI et TRAF2 a révélé la présence d’EXTL3 dans le complexe TNF-α/TNFRI/TRAF2 qui se forme au niveau de la membrane plasmique. De plus, ceci a été confirmé in vivo par microscopie confocale montrant la co-localisation de TNFRI-TRAF2-EXTL3 dans la membrane nucléaire, suggérant ainsi la formation d’un complexe identique au niveau des membranes plasmique et nucléaires. Toutefois, la présence du ligand Reg1B et/ou de la glucosamine inhibait la formation de ce complexe au niveau de la membrane plasmique, tout comme ils abolissaient la potentialisation de l’activité NF-κB par EXTL3. Ces résultats suggèrent non seulement que le recrutement d’EXTL3 libre dans le complexe TNF-α/TNFR1 est requis pour amplifier l’activation de NF-κB par TNF-α, mais aussi la capacité du ligand Reg1B et de la glucosamine à moduler cette activation à travers la baisse ou l’inhibition de l’interaction EXTL3-TNFR1. Les données de cette étude constituent une avancée majeure dans la compréhension des événements moléculaires qui contrôlent l’activation de NF-κB par les cytokines pro-inflammatoires. Ces résultats pourraient conduire au développement de nouvelles approches thérapeutiques pour le traitement de l’inflammation associée à l’OA et impliquant une activation incessante de NF-κB. / Osteoarthritis (OA) is an articular disease with a particularly high incidence in the elderly. This disease is characterized by the progressive degeneration of the cartilage followed by subchondral bone remodelling and a change in the soft tissues of the joint. Local chronic pain and joint malfunction are generally attributed to the inflammation of the synovial membrane, which in itself has been shown to significantly contribute to the pathogenesis of OA. In fact, the synthesis and expression of many proteolytic enzymes which degrade cartilage matrix are regulated by numerous cytokines originating from these inflammation sites. Two pro-inflammatory cytokines, the tumor necrosis factor alpha (TNF-α) and the interleukine-1β (Il-1β), play a major role in triggering inflammation associated with OA. These cytokines act on synoviocytes and chondrocytes by activating the transcription factor NF-κB, which in turn activates the cytokines’ genes. This positive regulating loop amplifies and maintains inflammatory responses. Recently, studies have shown that the over-expression of the REG receptor/EXTL3, a transmembranous receptor, enhances the activity of cytokine TNF-α in the activation of NF-κB. Unfortunately the mechanism involved in this process is still unknown. In addition, levels of EXTL3 and its ligand REG1B observed in OA patients suggest their possible involvement in the development of OA. Our goal was to study and elucidated the mechanisms used by EXTL3 to amplify NF-κB activation by TNF-α, as well as to examine whether the same phenomenon is occurring with IL-β. A human chondrocytes cell line called C28/I2 as experimental model. The techniques used for the current study were transfection assays, immunoflorescence (IF), immunoprecipitation (IP), and Western blotting (WB). Our transfection data have shown that EXTL3 was able to enhance NF-κB activity induced by TNF-α as well as by IL-1β. This result suggests that the enhanced NF-κB activity by EXTL3 is not specific to TNF-α. The IP experiments with TNFR1 and TRAF2 revealed the presence of EXTL3 in TNF-α/TNFR1 complex which is formed in the plasma membrane. Also, IF assay in combination with confocal microscopy allowed us to detect TNFR1/TRAF2/EXTL3 co-localisation on the nuclear membrane, suggesting the formation of TNF-α/TNFR1 complex on both the nuclear and plasma membranes. Somehow, REG1B, an EXTL3 ligand, and glucosamine were able to inhibit the formation of this complex at the plasma membrane. They were also able to abolish NF-κB activity enhanced by EXTL3. These results suggest that not only EXTL3 recruitment in the TNF-α/TNFR1 complex is required to amplify NF-κB activation by TNF-α, but also that REG1B ligand and glucosamine have the ability to modulate this activation by reducing or inhibiting EXTL3 and TNFR1 interactions. This study’s data represents a major advance in the understanding of molecular events controlling NF-κB activation by pro-inflammatory cytokines. These results could lead to the development of new therapeutics targets, in the treatment of disorders associated to OA and involving recurrent activation of NF-κB.
2

Importance du stress oxydant dans le diabète secondaire à la fibrose kystique

Ntimbane, Thierry 12 1900 (has links)
Introduction : La fibrose kystique (FK) est une maladie génétique mortelle qui touche principalement les poumons et l’appareil digestif. Elle est causée par des mutations sur le gène codant la protéine du CFTR, un canal chlore exprimé à la surface des organes à sécrétions exocrines. Les fonctions principales du CFTR sont les suivantes: 1) la régulation de l’homéostasie ionique des sécrétions; 2) le maintien de la fluidité des sécrétions et; 3) le transport du glutathion. Le dysfonctionnement de la protéine du CFTR rend les sécrétions visqueuses et épaisses, avec des phénomènes obstructifs qui sont responsables de l’apparition de fibrose au sein des divers organes. Dans le poumon, l’accumulation du mucus épais rend difficile l’élimination des bactéries inhalées, ces dernières établissent alors des cycles d’infection qui endommagent les tissus pulmonaires à travers des processus inflammatoires. Dans le tube digestif, le mucus épais entrave l’absorption d’une quantité suffisante d’éléments nutritifs incluant les principaux antioxydants. L’infection et l’inflammation des poumons favorisent l’apparition d’un stress oxydant qui détruit davantage le tissu pulmonaire. Le déficit en glutathion, probablement lié au dysfonctionnement de la proteine du CFTR, et la malabsorption des antioxydants favorisent l’augmentation du stress oxydant. Une augmentation du stress oxydant a été démontrée au cours du diabète et les produits dérivés du stress oxydant ont été mis en évidence dans la pathogenèse des complications associées au diabète. Une augmentation du stress oxydant a également été montrée durant la FK, mais sans pour autant expliquer la survenue du diabète secondaire à la FK dont la prévalence augmente sans cesse. Objectifs : Notre étude consiste à évaluer l’impact du stress oxydant dans les anomalies du métabolisme du glucose durant la FK, et à étudier son rôle dans les mécanismes de sécrétion d’insuline induite par le glucose. Pour ce faire, nous avons déterminé l’impact de la peroxydation lipidique sur la tolérance au glucose et la défense antioxydante globale, in vivo, chez des patients FK présentant une altération du métabolisme du glucose. De plus, nous avons évalué le rôle du stress oxydatif sur la synthèse et la sécrétion d’insuline, in vitro, dans les cellules pancréatiques βTC-tet. Résultats : Dans l’étude in vivo, nous avons démontré que l’intolérance au glucose et le diabète étaient associés à une augmentation de la peroxydation lipidique, traduite par la hausse des niveaux sanguins de 4-hydroxynonenal lié aux protéines (HNE-P). La défense antioxydante évaluée par la mesure du glutathion sanguin démontre que les niveaux de glutathion oxydé restent également élevés avec l’intolérance au glucose. Dans l’étude in vitro, nos résultats ont mis en évidence que l’exposition de la cellule βTC-tet au stress oxydant: 1) induit un processus de peroxydation lipidique; 2) augmente la sécrétion basale d’insuline; 3) diminue la réponse de la sécrétion d’insuline induite par le glucose; et 4) n’affecte que légèrement la synthèse de novo de l’insuline. Nous avons aussi démontré que les cellules pancréatiques βTC-tet résistaient au stress oxydant en augmentant leur synthèse en glutathion tandis que la présence d’un antioxydant exogène pouvait restaurer la fonction sécrétoire de ces cellules. Conclusion : Le stress oxydant affecte le fonctionnement de la cellule pancréatique β de plusieurs manières : 1) il inhibe le métabolisme du glucose dont les dérivés sont nécessaires à la sécrétion d’insuline; 2) il active la voie de signalisation impliquant les gènes pro-inflammatoires et; 3) il affecte l’intégrité membranaire en induisant le processus de peroxydation lipidique. / Introduction: Cystic fibrosis (CF) is the most prevalent lethal genetic disorder affecting mostly lungs and the gastro-intestinal tract. CF is caused by mutations in the gene encoding the CFTR protein, a chloride channel expressed in organs with exocrine secretions. The main functions of the CFTR channel are the following: 1) regulation of electrolyte composition of secretions; 2) maintenance of fluid secretions and; 3) transport of glutathione. The CFTR protein dysfunction leads to thick and viscous secretions with obstructive phenomena responsible for fibrosis occurence in various organs. In the lungs, accumulation of the thick mucus reduces their capacity to eliminate inhaled bacteria responsible for repeated infections and pulmonary tissue damage through inflammatory processes. In the gastro-intestinal tract, the thicknened micus leads to nutritive elements and the major antioxidants malabsorption. Increased oxidative stress has been associated with the onset of diabetes and oxidative stress by-products have been involved in the pathogenesis of diabetic complications. Increased oxidative stress has also been shown in CF but the relationship between oxidative stress and the occurrence of CF-related diabetes (CFRD) remains unclear. Objectives: Our study aims to investigate the role of oxidative stress in the impaired glucose metabolism in CF patients and its relation with the altered glucose-stimulated insulin secretion process. We first determined the impact of lipid peroxidation on glucose tolerance and the antioxidant status in CF patients with altered glucose tolerance. Secondly, we evaluated the role of oxidative stress on insulin synthesis and secretion in the murine pancreatic β-cell line βTC-tet. Results: In CF patients, we demonstrated that conditions of glucose intolerance and diabetes are associated with increased lipid peroxidation as seen with increased blood levels of 4-hydroxynonenal bound to proteins (HNE-P). The antioxidant status evaluated with blood levels of glutathione showed a strong correlation between levels of oxidized glutathione and glucose intolerance. Acute exposure of βTC-tet to oxidative stress led to: 1) increased lipid peroxidation marker levels; 2) increased insulin release in basal conditions; 3) altered glucose-stimulated insulin secretion process and; 4) no effect on the insulin synthessis pathway. We also demonstrated that pancreatic βTC-tet cells can fight against oxidative stress by upregulating their glutathione synthesis whereas the presence of an exogenous antioxidant can restore their secretory function. Conclusion: Oxidative stress can induce β-cell dysfunction through many pathways: 1) it inhibits the glucose metabolism and its by-products which are required for insulin secretion, 2) it activates the signalling pathway involving the pro-inflammatory genes and; 3) it damages the cell structure by inducting the lipid peroxidation process.
3

Étude de la régulation transcriptionnelle du gène Indian Hedgehog et de son rôle dans l'ostéoarthrose

Bernard, Lauriane 02 1900 (has links)
L’Ostéoarthrose (OA) est une maladie articulaire entrainant une dégénérescence du cartilage et une ossification de l’os sous-chondral. Elle touche un Canadien sur 10 et pourtant l’origine de cette pathologie est encore inconnue. Dans le cadre de ce projet, la contribution de deux facteurs de transcription, NFAT1 et PITX1, dans la régulation transcriptionnelle du promoteur d’IHH a été examiné compte tenu de l’implication potentielle de la voie hedgehog (Hh) et de ces facteurs dans la pathogenèse de l’OA. La voie de signalisation Hh régule la croissance et la différenciation des chondrocytes. Indian hedgehog (IHH), l’un des trois membres de la famille Hh, contrôle leur prolifération et leur différenciation. / Osteoarthritis (OA) is the most common joint disorder and is characterized by cartilage degradation and endochondral ossification. One in every ten Canadians is affected, yet its aetiopathogenesis remains unknown. In this present study, two new regulators of the IHH promoter, NFAT1 and PITX1, were studied. The downregulation of IHH expression by these factors could contribute to the OA pathogenesis. The Hedgehog (Hh) signaling pathway regulates chondrocyte growth and differentiation in the growth plate. Indian hedgehog (IHH), one of its members, stimulates chondrocyte proliferation and osteoblast differentiation. IHH is essential in skeletogenesis, osteoblastogenesis and cartilage growth.
4

Étude structuro-fonctionnelle de SecP43 et caractérisation de ses interactions avec SepSecS et l’ARNtSec in vitro

Dopgwa Puemi, Arnold 12 1900 (has links)
Selenoproteins are proteins containing selenium in the form of the 21st amino acid, selenocysteine. Selenocysteine (Sec) is directly synthesized onto its cognate tRNA (tRNA[Ser]Sec or tRNASec) and inserted into selenoproteins co-translationally with the help of various cis- and trans-acting factors. Among those factors, SecP43 has been reported to possibly play an essential role in the methylation at the 2’-hydroxylribosyl moiety in the wobble position (Um34) of Sec-tRNA[Ser]Sec and consequently reduce the expression of glutathione peroxidase 1. SecP43 also called tRNASec-associated protein has also been reported to interact in with SepSecS and tRNASec in vivo and the targeted removal of one of these proteins affected the binding of the other to the Sec-tRNASec. The initial aim of the project was to solve the structure of SecP43 by means of x-ray crystallography. Secondly, we were interested in characterizing the interaction of the latter with some of the components of the selenocysteine insertion machinery. These factors are SepSecS and tRNASec. We were able to optimize the expression and the purification of soluble form of the human homologue of SecP43 and of SepSecS by using an adapted auto-induction protocol. This was a major challenge considering that full length SecP43 has not been expressed and purify to date. We did not succeed in crystallizing SecP43. Our failure to crystallize SecP43 is probably due to the fact that it is a partially folded protein as we were able to demonstrate by SAXS (Small Angle X-ray Scattering). The SecP43 envelope calculated by SAXS displayed a rod-shape like structure. In order to enhance the stability of SecP43 required for crystallization, binding affinity studies were conducted to characterize the interaction between SecP43, tRNASec and SepSecS. We did not detect an interaction between SecP43 and tRNASec by using EMSA (Electrophoretic Mobility Shift Assay) and gel filtration. We also could not detect an interaction between SecP43 and SepSecS using a cross-linking assay. In contrast, the tRNASec/SepSecS interaction was demonstrated by EMSA and the addition of SecP43 seemed to reduce the binding affinity. Therefore, SecP43 might induce a conformational change in SepSecS in the presence of tRNASec. / Les sélénoprotéines sont des protéines contenant du sélénium sous la forme du 21ème acide aminé, la sélénocystéine. Sélénocystéine (Sec) est synthétisé sur son ARNt (ARNt[Ser]Sec ou ARNtSec) et inséré dans les sélénoprotéines de manière co-traductionnelle, avec l'aide de divers facteurs agissant en cis et en trans. Parmi ces facteurs, SecP43 joue possiblement un rôle dans la méthylation du groupement 2'- hydroxylribosyl dans la position d'oscillation (Um34) du Sec-ARNt[Ser]Sec et par conséquent, l’inhibition de SecP43 réduit l'expression de la glutathion peroxydase 1. L’interaction SecP43/ARNtSec/SepSecS a été démontrée in vivo et le retrait ciblé d’une de ces protéines affecte la liaison de l’autre à Sec-ARNtSec. L'objectif initial du projet était de résoudre la structure de SecP43 par cristallographie. En second lieu, nous avons voulu caractériser l’interaction de ce dernier avec certaines composantes de la machinerie d'insertion de la sélénocystéine. Ces facteurs sont notamment SepSecS et ARNtSec. Nous avons optimisé la surexpression et la purification des homologues humains de SecP43 et SepSecS en utilisant un protocole d'auto-induction. Ce fut un défi majeur étant donné que SecP43 n'avait pas encore été surexprimée et purifiée à ce jour. Nous n'avons pas réussi à cristalliser SecP43. Cet échec s’explique probablement par le fait que SecP43 est une protéine dynamique et partiellement replié comme nous avons pu le démontrer par SAXS (Small Angle X-ray Scattering). L'enveloppe de SecP43 calculée par SAXS présente une structure filiforme et non globulaire. Afin d'améliorer la stabilité de SecP43 requise pour la cristallisation, des études d'affinité de liaison ont été conduites pour caractériser les interactions entre SecP43, ARNtSec et SepSecS. Aucune interaction substantielle n’a pu être démontrée entre SecP43 et ARNtSec par retard sur gel ou par chromatographie d’exclusion stérique. Le même constat fut fait pour l’interaction SecP43/SepSecS. En revanche, l’interaction ARNtSec/SepSecS a été démontrée par EMSA (Electrophoretic Mobility Shift Assay) et l'addition de SecP43 semble réduire l'affinité de liaison de ladite interaction. Par conséquent, SecP43 induirait un changement conformationel de SepSecS en présence du ARNtSec.
5

Régulation de l’activité de Dicer par TRBP dans la biogénèse des micro-ARN

Bouvette, Jonathan 07 1900 (has links)
No description available.
6

Importance du stress oxydant dans le diabète secondaire à la fibrose kystique

Ntimbane, Thierry 12 1900 (has links)
Introduction : La fibrose kystique (FK) est une maladie génétique mortelle qui touche principalement les poumons et l’appareil digestif. Elle est causée par des mutations sur le gène codant la protéine du CFTR, un canal chlore exprimé à la surface des organes à sécrétions exocrines. Les fonctions principales du CFTR sont les suivantes: 1) la régulation de l’homéostasie ionique des sécrétions; 2) le maintien de la fluidité des sécrétions et; 3) le transport du glutathion. Le dysfonctionnement de la protéine du CFTR rend les sécrétions visqueuses et épaisses, avec des phénomènes obstructifs qui sont responsables de l’apparition de fibrose au sein des divers organes. Dans le poumon, l’accumulation du mucus épais rend difficile l’élimination des bactéries inhalées, ces dernières établissent alors des cycles d’infection qui endommagent les tissus pulmonaires à travers des processus inflammatoires. Dans le tube digestif, le mucus épais entrave l’absorption d’une quantité suffisante d’éléments nutritifs incluant les principaux antioxydants. L’infection et l’inflammation des poumons favorisent l’apparition d’un stress oxydant qui détruit davantage le tissu pulmonaire. Le déficit en glutathion, probablement lié au dysfonctionnement de la proteine du CFTR, et la malabsorption des antioxydants favorisent l’augmentation du stress oxydant. Une augmentation du stress oxydant a été démontrée au cours du diabète et les produits dérivés du stress oxydant ont été mis en évidence dans la pathogenèse des complications associées au diabète. Une augmentation du stress oxydant a également été montrée durant la FK, mais sans pour autant expliquer la survenue du diabète secondaire à la FK dont la prévalence augmente sans cesse. Objectifs : Notre étude consiste à évaluer l’impact du stress oxydant dans les anomalies du métabolisme du glucose durant la FK, et à étudier son rôle dans les mécanismes de sécrétion d’insuline induite par le glucose. Pour ce faire, nous avons déterminé l’impact de la peroxydation lipidique sur la tolérance au glucose et la défense antioxydante globale, in vivo, chez des patients FK présentant une altération du métabolisme du glucose. De plus, nous avons évalué le rôle du stress oxydatif sur la synthèse et la sécrétion d’insuline, in vitro, dans les cellules pancréatiques βTC-tet. Résultats : Dans l’étude in vivo, nous avons démontré que l’intolérance au glucose et le diabète étaient associés à une augmentation de la peroxydation lipidique, traduite par la hausse des niveaux sanguins de 4-hydroxynonenal lié aux protéines (HNE-P). La défense antioxydante évaluée par la mesure du glutathion sanguin démontre que les niveaux de glutathion oxydé restent également élevés avec l’intolérance au glucose. Dans l’étude in vitro, nos résultats ont mis en évidence que l’exposition de la cellule βTC-tet au stress oxydant: 1) induit un processus de peroxydation lipidique; 2) augmente la sécrétion basale d’insuline; 3) diminue la réponse de la sécrétion d’insuline induite par le glucose; et 4) n’affecte que légèrement la synthèse de novo de l’insuline. Nous avons aussi démontré que les cellules pancréatiques βTC-tet résistaient au stress oxydant en augmentant leur synthèse en glutathion tandis que la présence d’un antioxydant exogène pouvait restaurer la fonction sécrétoire de ces cellules. Conclusion : Le stress oxydant affecte le fonctionnement de la cellule pancréatique β de plusieurs manières : 1) il inhibe le métabolisme du glucose dont les dérivés sont nécessaires à la sécrétion d’insuline; 2) il active la voie de signalisation impliquant les gènes pro-inflammatoires et; 3) il affecte l’intégrité membranaire en induisant le processus de peroxydation lipidique. / Introduction: Cystic fibrosis (CF) is the most prevalent lethal genetic disorder affecting mostly lungs and the gastro-intestinal tract. CF is caused by mutations in the gene encoding the CFTR protein, a chloride channel expressed in organs with exocrine secretions. The main functions of the CFTR channel are the following: 1) regulation of electrolyte composition of secretions; 2) maintenance of fluid secretions and; 3) transport of glutathione. The CFTR protein dysfunction leads to thick and viscous secretions with obstructive phenomena responsible for fibrosis occurence in various organs. In the lungs, accumulation of the thick mucus reduces their capacity to eliminate inhaled bacteria responsible for repeated infections and pulmonary tissue damage through inflammatory processes. In the gastro-intestinal tract, the thicknened micus leads to nutritive elements and the major antioxidants malabsorption. Increased oxidative stress has been associated with the onset of diabetes and oxidative stress by-products have been involved in the pathogenesis of diabetic complications. Increased oxidative stress has also been shown in CF but the relationship between oxidative stress and the occurrence of CF-related diabetes (CFRD) remains unclear. Objectives: Our study aims to investigate the role of oxidative stress in the impaired glucose metabolism in CF patients and its relation with the altered glucose-stimulated insulin secretion process. We first determined the impact of lipid peroxidation on glucose tolerance and the antioxidant status in CF patients with altered glucose tolerance. Secondly, we evaluated the role of oxidative stress on insulin synthesis and secretion in the murine pancreatic β-cell line βTC-tet. Results: In CF patients, we demonstrated that conditions of glucose intolerance and diabetes are associated with increased lipid peroxidation as seen with increased blood levels of 4-hydroxynonenal bound to proteins (HNE-P). The antioxidant status evaluated with blood levels of glutathione showed a strong correlation between levels of oxidized glutathione and glucose intolerance. Acute exposure of βTC-tet to oxidative stress led to: 1) increased lipid peroxidation marker levels; 2) increased insulin release in basal conditions; 3) altered glucose-stimulated insulin secretion process and; 4) no effect on the insulin synthessis pathway. We also demonstrated that pancreatic βTC-tet cells can fight against oxidative stress by upregulating their glutathione synthesis whereas the presence of an exogenous antioxidant can restore their secretory function. Conclusion: Oxidative stress can induce β-cell dysfunction through many pathways: 1) it inhibits the glucose metabolism and its by-products which are required for insulin secretion, 2) it activates the signalling pathway involving the pro-inflammatory genes and; 3) it damages the cell structure by inducting the lipid peroxidation process.
7

Rôle du récepteur REG/EXTL3 dans l’inflammation et son implication possible dans l’ostéoarthrose (OA)

Boiro, Mamadou S. 07 1900 (has links)
L’ostéoarthrose (OA) est une maladie articulaire dont l’incidence augmente avec le vieillissement de la population. Elle se caractérise par une détérioration progressive du cartilage articulaire accompagnée du remodelage de l’os sous-chondral et du changement des tissus mous de l’articulation. La douleur et le dysfonctionnement de l’articulation affectée sont généralement attribués à l’inflammation et l’épanchement de la synovie. Plusieurs évidences indiquent que l’inflammation de la membrane synoviale contribue grandement à la pathogenèse de l’OA. En effet, la synthèse et l’expression des enzymes protéolytiques qui dégradent la matrice cartilagineuse sont régulées par de nombreuses cytokines retrouvées au sein de ce foyer inflammatoire. Deux d’entre elles, l’interleukine-1 beta (IL-1β) et le «tumor necrosis factor » alpha (TNF-α), jouent un rôle majeur dans le déclenchement de l’inflammation associée à l’OA. Ces cytokines pro-inflammatoires agissent notamment sur les synoviocytes et les chondrocytes en activant NF-κB qui, à son tour, active les gènes de cytokines. Cette boucle de régulation positive amplifie et perpétue la réponse inflammatoire. Récemment, il a été rapporté que l’activation de NF-κB par TNF-α peut être potentialisée par EXTL3, un récepteur transmembranaire ; mais le mécanisme sous-jacent de cet effet demeure inconnu. Toutefois, les niveaux important d’EXTL3 et de son ligand Reg1B chez les patients arthrosiques, laissent croire que ces protéines jouent un rôle dans le développement de l’OA. Notre objectif était d’étudier le mécanisme par lequel EXTL3 amplifie l’activation de NF-κB par TNF-α et d’examiner si ce phénomène se produit aussi avec l’IL-1β. Nous avons utilisé les cellules C28/I2, une lignée cellulaire de chondrocytes, comme modèle d’étude. Les transfections transitoires avec un vecteur d’expression, les techniques d’immunofluorescence (IF), d’immunoprécipitation (IP) et d’immunobuvardage de type Western (IB); ont été utilisées dans le cadre de diverses approches expérimentales. Les résultats obtenus par transfection ont révélé que la protéine EXTL3 potentialisait l’activation de NF-κB aussi bien par IL-1β que par TNF-α. Ce résultat signifie que la potentialisation de l’activité NF-κB par EXTL3 n’est pas spécifique à TNF-α. D’autre part, l’IP avec TNFRI et TRAF2 a révélé la présence d’EXTL3 dans le complexe TNF-α/TNFRI/TRAF2 qui se forme au niveau de la membrane plasmique. De plus, ceci a été confirmé in vivo par microscopie confocale montrant la co-localisation de TNFRI-TRAF2-EXTL3 dans la membrane nucléaire, suggérant ainsi la formation d’un complexe identique au niveau des membranes plasmique et nucléaires. Toutefois, la présence du ligand Reg1B et/ou de la glucosamine inhibait la formation de ce complexe au niveau de la membrane plasmique, tout comme ils abolissaient la potentialisation de l’activité NF-κB par EXTL3. Ces résultats suggèrent non seulement que le recrutement d’EXTL3 libre dans le complexe TNF-α/TNFR1 est requis pour amplifier l’activation de NF-κB par TNF-α, mais aussi la capacité du ligand Reg1B et de la glucosamine à moduler cette activation à travers la baisse ou l’inhibition de l’interaction EXTL3-TNFR1. Les données de cette étude constituent une avancée majeure dans la compréhension des événements moléculaires qui contrôlent l’activation de NF-κB par les cytokines pro-inflammatoires. Ces résultats pourraient conduire au développement de nouvelles approches thérapeutiques pour le traitement de l’inflammation associée à l’OA et impliquant une activation incessante de NF-κB. / Osteoarthritis (OA) is an articular disease with a particularly high incidence in the elderly. This disease is characterized by the progressive degeneration of the cartilage followed by subchondral bone remodelling and a change in the soft tissues of the joint. Local chronic pain and joint malfunction are generally attributed to the inflammation of the synovial membrane, which in itself has been shown to significantly contribute to the pathogenesis of OA. In fact, the synthesis and expression of many proteolytic enzymes which degrade cartilage matrix are regulated by numerous cytokines originating from these inflammation sites. Two pro-inflammatory cytokines, the tumor necrosis factor alpha (TNF-α) and the interleukine-1β (Il-1β), play a major role in triggering inflammation associated with OA. These cytokines act on synoviocytes and chondrocytes by activating the transcription factor NF-κB, which in turn activates the cytokines’ genes. This positive regulating loop amplifies and maintains inflammatory responses. Recently, studies have shown that the over-expression of the REG receptor/EXTL3, a transmembranous receptor, enhances the activity of cytokine TNF-α in the activation of NF-κB. Unfortunately the mechanism involved in this process is still unknown. In addition, levels of EXTL3 and its ligand REG1B observed in OA patients suggest their possible involvement in the development of OA. Our goal was to study and elucidated the mechanisms used by EXTL3 to amplify NF-κB activation by TNF-α, as well as to examine whether the same phenomenon is occurring with IL-β. A human chondrocytes cell line called C28/I2 as experimental model. The techniques used for the current study were transfection assays, immunoflorescence (IF), immunoprecipitation (IP), and Western blotting (WB). Our transfection data have shown that EXTL3 was able to enhance NF-κB activity induced by TNF-α as well as by IL-1β. This result suggests that the enhanced NF-κB activity by EXTL3 is not specific to TNF-α. The IP experiments with TNFR1 and TRAF2 revealed the presence of EXTL3 in TNF-α/TNFR1 complex which is formed in the plasma membrane. Also, IF assay in combination with confocal microscopy allowed us to detect TNFR1/TRAF2/EXTL3 co-localisation on the nuclear membrane, suggesting the formation of TNF-α/TNFR1 complex on both the nuclear and plasma membranes. Somehow, REG1B, an EXTL3 ligand, and glucosamine were able to inhibit the formation of this complex at the plasma membrane. They were also able to abolish NF-κB activity enhanced by EXTL3. These results suggest that not only EXTL3 recruitment in the TNF-α/TNFR1 complex is required to amplify NF-κB activation by TNF-α, but also that REG1B ligand and glucosamine have the ability to modulate this activation by reducing or inhibiting EXTL3 and TNFR1 interactions. This study’s data represents a major advance in the understanding of molecular events controlling NF-κB activation by pro-inflammatory cytokines. These results could lead to the development of new therapeutics targets, in the treatment of disorders associated to OA and involving recurrent activation of NF-κB.
8

Étude de la régulation transcriptionnelle du gène Indian Hedgehog et de son rôle dans l'ostéoarthrose

Bernard, Lauriane 02 1900 (has links)
L’Ostéoarthrose (OA) est une maladie articulaire entrainant une dégénérescence du cartilage et une ossification de l’os sous-chondral. Elle touche un Canadien sur 10 et pourtant l’origine de cette pathologie est encore inconnue. Dans le cadre de ce projet, la contribution de deux facteurs de transcription, NFAT1 et PITX1, dans la régulation transcriptionnelle du promoteur d’IHH a été examiné compte tenu de l’implication potentielle de la voie hedgehog (Hh) et de ces facteurs dans la pathogenèse de l’OA. La voie de signalisation Hh régule la croissance et la différenciation des chondrocytes. Indian hedgehog (IHH), l’un des trois membres de la famille Hh, contrôle leur prolifération et leur différenciation. / Osteoarthritis (OA) is the most common joint disorder and is characterized by cartilage degradation and endochondral ossification. One in every ten Canadians is affected, yet its aetiopathogenesis remains unknown. In this present study, two new regulators of the IHH promoter, NFAT1 and PITX1, were studied. The downregulation of IHH expression by these factors could contribute to the OA pathogenesis. The Hedgehog (Hh) signaling pathway regulates chondrocyte growth and differentiation in the growth plate. Indian hedgehog (IHH), one of its members, stimulates chondrocyte proliferation and osteoblast differentiation. IHH is essential in skeletogenesis, osteoblastogenesis and cartilage growth.
9

Dveloppement de nouvelles mthodes d'identification des sites de SUMOylation par protéomique

Lamoliatte, Frederic 08 1900 (has links)
La régulation des protéines par les modifications post-traductionnelles (PTMs) est un événement clé dans le maintien des fonctions biologiques de la cellule. Parmi elles, on retrouve les modifications causées par une famille de molécules appelées Ubiquitin Like Modifiers (UBls), incluant l’ubiquitination, la neddylation ou encore la SUMOylation. Au contraire des modifications classiques faisant intervenir des petits groupements chimiques, telles que la phosphorylation ou l’acétylation, les UBls sont eux-mêmes des protéines se greffant sur le groupement amine en position e des lysines des protéines ciblées, générant des protéines ramifiées. Alors que la principale fonction de l’ubiquitination est la dégradation des protéines par le protéasome, les autres UBls sont encore mal caractérisées. Dans ce contexte, le but de cette thèse était de développer de nouvelles approches protéomiques afin de définir le rôle de la SUMOylation dans des cellules humaines. En effet, l’identification des sites de SUMOylation par spectrométrie de masse (MS) est un défi. Ceci s’explique par la très faible abondance des protéines SUMOylées dans la cellule ainsi que par la longue chaine de 19 à 34 acides aminés laissés sur la protéine ciblée après digestion à la trypsine. Afin de pallier à ces deux problèmes, un mutant de la protéine SUMO a été généré au sein du laboratoire. La première altération sur ce mutant est l’insertion d’une séquence 6xHis à l’extrémité N-terminale de la protéine afin de faciliter l’enrichissement des protéines SUMOylés. La seconde altération de la protéine SUMO est la mutation d’une glutamine en arginine en position 6 à partir du C-terminal. Cette mutation a pour effet de libérer des peptides trypsiques ramifiés contenant seulement 5 acides aminés provenant de SUMO sur le peptide ciblé. Le premier but de cette thèse était de développer une méthode permettant de cibler spécifiquement les peptides SUMOylés lors d’une analyse par LC-MS. Cette méthode repose sur le patron de fragmentation propre de la chaine de 5 acides aminés commune à tous les peptides SUMOylés et utilise la technologie Sequential Window Acquisition of all THeoretical Mass Spectra (SWATH). Lors d’une telle analyse, l’échantillon est injecté une première fois en fragmentant de larges fenêtres de masses. Ceci permet d’obtenir des spectres MS/MS pour tous les peptides présents dans l’échantillon. Un algorithme est ensuite utilisé afin de détecter les fenêtres de masses contenant des peptides SUMOylés et de recalculer le rapport masse sur charge des peptides candidats. Les injections subséquentes permettent ensuite de fragmenter uniquement les peptides candidats. Cette méthode s’est avérée être complémentaire aux méthodes conventionnelles et a permis l’identification d’un total de 54 peptides SUMOylés à partir d’extraits protéiques enrichis sur billes NiNTA. La seconde approche envisagée était d’ajouter une étape d’enrichissement supplémentaire au niveau peptidique. Pour cela, un anticorps reconnaissant la chaine de 5 acides aminés laissée après digestion tryptique a été produit. Cette étape d’immuno-purification supplémentaire a permis l’identification d’un total de 954 sites de SUMOylation dans des cellules humaines lors d’une analyse à grande échelle. Afin de valider les nouvelles cibles identifiées, une étude fonctionnelle de la SUMOylation de la protéine CDC73 a été réalisée. Cette étude a montré que la SUMOylation de CDC73 était requise pour sa rétention nucléaire, confirmant ainsi un rôle important pour la SUMOylation de cette protéine. Cependant, le principal défaut de la précédente approche était la nécessité de cultiver 500 millions de cellules par condition étudiée. Cette approche a donc été optimisée afin de pouvoir réduire le nombre de cellules utilisées dans une analyse. L’optimisation de chacun des paramètres analytiques nous a permis de réduire ce nombre de 50 fois, permettant ainsi d’identifier plus de 1000 sites de SUMOylation à partir de seulement 10 millions de cellules. De plus, nous avons montré que cette approche permet l’identification concomitante des sites de SUMOylation et d’ubiquitination dans un seul échantillon biologique. Ceci a permis d’identifier un nouveau mécanisme de régulation des deubiquitinases par les UBls, ainsi que d’élucider les mécanismes de translocation du protéasome dans la cellule. Dans l’ensemble, nous avons développé des méthodes permettant de mieux caractériser la SUMOylation des protéines et avons prouvé que ces méthodes sont applicables à l’étude de plusieurs UBls en parallèle. Nous sommes certains que l’approche par immuno-purification permettra à l’avenir d’identifier la SUMOylation à un niveau endogène. / Protein regulation by post-translational modification (PTMs) is a key event in regulating cellular function. These modifications include a group termed Ubiquitin-Like modifiers (UBLs) that contain, but is not limited to, ubiquitylation, neddylation and SUMOylation. While conventional modifications, such as phosphorylation or acetylation, involve a small chemical group, UBLs are proteins attached from their C-terminus to the epsilon amine group of a lysine contained in the targeted protein, thus generating branched proteins. While the main function of ubiquitylation is protein degradation by the proteasome, other UBLs remain mostly unexplored. In this context, the aim of this thesis was to develop new proteomics strategies to characterize SUMOylation in human cells. Indeed, identification of SUMOylation sites by mass spectrometry (MS) is a challenge. This is due to the low abundance of SUMOylated proteins in the cells as well as the long 19 to 34 amino acid SUMO remnant left of the target after trypsin digestion. In this context, our research group has developed a mutant of SUMO containing two mutations. The first mutation consists of a 6xHis tag at the N-terminus of SUMO in order to facilitate SUMOylated substrates enrichment at the protein level. A second mutation was also introduced at the 6th position from the C-terminus and consists in a glutamine to arginine substitution in order to release shorter SUMOylated peptides after trypsin digestion. The first goal of this thesis was to develop a targeted approach to specifically fragment SUMOylated peptides during an LC-MS run. This was enabled by the common fragmentation pattern of all SUMOylated peptides arising from the five amino acid SUMO remnant. Digested peptides were first analyzed using SequentialWindow Acquisition of all THeoretical Mass Spectra (SWATH). In this experiment, large mass windows are fragmented. A custom algorithm is then used that detects mass windows in which candidates are located and determine their intact mass. In subsequent injections these peptides were then specifically targeted. This method was complementary to data dependent acquisition and enabled the identification of 54 SUMOylated peptides. In a second approach, we wanted to enrich for SUMOylated substrates at the peptide level. An antibody was raised against the five amino acid SUMO remnant and used for immunopurification of SUMOylated peptides. In total, we identified 954 SUMOylation sites in human cells. Moreover, functional analysis of the newly identified substrate CDC73 revealed that SUMOylation on K136 is required for its nuclear retention, thus showing a new role for the SUMOylation of this protein. Although this approach gave new insights into the characterization of SUMOylated substrates, high amounts of material were still required to obtain such results. The last goal of this thesis was to optimize the previously developed immunopurification. Systematic optimization of every analytical parameter was done and enabled the reduction of the number of cells required by a factor of 50, without affecting the number of SUMOylation sites identified. Moreover, we used this approach to profile for SUMOylation and ubiquitylation dynamics in human cells upon proteasomal inhibition with MG132. This revealed an unexpected regulation mechanism of deubiquitinating enzymes by UBLs and unraveled translocation mechanisms of the proteasome in the cell. Our SUMO proteomic approach demonstrates capability for the concomitant analysis of SUMOylation and ubiquitylation. In the future, we hope to extend this approach to endogenous SUMOylation.
10

The regulatory roles of APE1 and Prdx1 interaction

Wang, Zhiqiang 07 1900 (has links)
L’apurinic/apyrimidic endonuclease 1 (APE1) est une protéine multifonctionnelle qui joue un rôle important dans la voie de réparation de l’ADN par excision de base. Elle sert également de coactivateur de transcription et est aussi impliquée dans le métabolisme de l’ARN et la régulation redox. APE1 peut cliver les sites AP ainsi que retirer des groupements, sur des extrémités 3’ créées suite à des bris simple brin, qui bloquent les autres enzymes de réparation, permettant de poursuivre la réparation de l’ADN, puisqu’elle possède plusieurs activités de réparation de l’ADN comme une activité phosphodiestérase 3’ et une activité exonucléase 3’→5’. Les cellules de mammifères ayant subi un knockdown d’APE1 présentent une grande sensibilité face à de nombreux agents génotoxiques. APE1 ne possède qu’une seule cystéine située au 65e acide aminé. Celle-ci est nécessaire pour maintenir l’état de réduction de nombreux activateurs de transcription tels que p53, NF-κB, AP-1, c-Jun at c-Fos. Ainsi, elle se retrouve impliquée dans la régulation de l’expression génique. APE1 passe également à travers au moins 4 types de modifications post-traductionnelles : l’acétylation, la désacétylation, la phosphorylation et l’ubiquitylation. La façon dont APE1 est recrutée pour accomplir ses différentes fonctions biologiques demeure un mystère, bien que cela puisse être relié à sa capacité d’interaction avec de multiples partenaires différents. Sous des conditions de croissance normales, il a été démontré qu’APE1 interagit avec de nombreux partenaires impliqués dans de multiples fonctions. Nous émettons l’hypothèse que l’état d’oxydation d’APE1 est ce qui contrôle les partenaires avec lesquels la protéine interagira, lui permettant d’accomplir des fonctions précises. Dans cette étude nous démontrons que le peroxyde d’hydrogène altère le réseau d’interactions d’APE1. Un nouveau partenaire d’interaction d’APE1, Prdx1, un membre de la famille des peroxirédoxines responsable de récupérer le peroxyde d’hydrogène, est caractérisé. Nous démontrons qu’un knockdown de Prdx1 n’affecte pas l’activité de réparation de l’ADN d’APE1, mais altère sa détection et sa distribution cellulaire à l’intérieur des cellules HepG2 conduisant à une induction accrue de l’interleukine 8 (IL-8). L’IL8 est une chimiokine impliquée dans le stress cellulaire en conditions physiologiques et en cas de stress oxydatif. Il a été démontré que l’induction de l’IL-8 est dépendante d’APE1 indiquant que Prdx1 pourrait réguler l’activité transcriptionnelle d’APE1. Il a été découvert que Prdx1 est impliquée dans la régulation redox suite à une réponse initiée par le peroxyde d’hydrogène. Ce dernier possède un rôle important comme molécule de signalisation dans de nombreux processus biologiques. Nous montrons que Prdx1 est nécessaire pour réduire APE1 dans le cytoplasme en réponse à la présence de H2O2. En présence de Prdx1, la fraction d’APE1 présent dans le cytoplasme est réduite suite à une exposition au peroxyde d’hydrogène, et Prdx1 est hyperoxydé suite à l’interaction entre les deux molécules. Cela suggère que le signal, que produit le peroxyde d’hydrogène, sur APE1 passe par Prdx1. Un knockdown d’APE1 diminue la conversion de la forme dimérique de Prdx1 vers la forme monomérique. Cette observation implique qu’APE1 pourrait être impliquée dans la régulation de l’activité catalytique de Prdx1 en accélérant son hyperoxydation. / Apurinic/apyrimidinic endonuclease 1 (APE1) is a multifunctional protein, which play important roles in base excision repair (BER) pathway and serve as transcriptional co-activator. APE1 is also involved in RNA metabolism and redox regulation. APE1 can cleave abasic sites and process 3’-blocking termini into 3’-OH for DNA repair replication as it posseses several DNA repair activities including AP endonuclease, 3’-phosphodiesterase and 3’ to 5’-exonuclease. Mammalian cells knockdown for APE1 are very sensitive to various DNA damaging agents. APE1 has a unique cysteine C65, which is required to maintain the reduced state of several transcriptional activators such as p53, NF-кB, AP-1, c-Jun, and c-Fos and therefore is involved in the regulation of gene expression. APE1 also undergoes at least four types of post-translational modifications that include acetylation, deacetylation, phosphorylation and ubiquitylation. How APE1 is being recruited to execute the various biological functions remains a challenge, although this could be directly related to its ability to interact with multiple different partners. Under normal growth conditions, APE1 has been shown to interact with a number of proteins that are involved in various functions. We propose that the oxidative state of APE1 governs its interacting partners thereby allowing the protein to perform specific functions. In this study we find that APE1 interactome alters in response to hydrogen peroxide. One novel APE1 interacting partner Prdx1, a member of the peroxiredoxin family that can scavenge hydrogen peroxide is characterized. We demonstrate that knockdown of Prdx1 did not impair APE1 DNA repair activity, but alters APE1 detection, and subcellular distribution in HepG2 cells leading to the induction of interleukin 8 (IL-8). IL-8 is a pro-inflammatory chemokine involved in cellular stress, under physiological and iv oxidative stress conditions. It has been shown that the induction of IL-8 is dependent on APE1 indicating Prdx1 may regulate APE1 transcriptional activity. Prdx1 has been discovered to be involved in the redox regulation of cell signaling initiated by hydrogen peroxide, which has important roles as a signaling molecule in the regulation of a variety of biological processes. Prdx1 exists as a dimer in the cells and we show that Prdx1 is required to reduce APE1 in the cytoplasm in response to H2O2. During this process, the dimeric form of Prdx1 is converted to the oxidized monomeric form. Interestingly, the H2O2-induced conversion of Prdx1 to the monomeric form is dependent upon the presence of APE1. These observations imply that there is a tight regulatory network existing between APE1 and Prdx1.

Page generated in 0.0715 seconds