Spelling suggestions: "subject:"chimie atmosphérique"" "subject:"chimie lithosphérique""
1 |
Paramétrisation des processus physico-chimiques de formation des nuages et étude de leurs impacts sur l'évolution de la composition chimique atmosphériqueChampeau, François 23 May 2007 (has links) (PDF)
Ce travail porte sur le développement d'un module microphysique de nuages liquides et glacés dans un modèle de chimie multiphase (Leriche et al., 2001). Le modèle complet a été appliqué afin d'évaluer le rôle de ces nuages sur les teneurs en polluants atmosphériques. Les nuages modulent le transport horizontal et vertical des polluants ainsi que leur lessivage via les précipitations, ils sont aussi le siège de réactions chimiques complexes. En paramétrisant la répartition des polluants entre les différentes phases du nuage via des processus comme le givrage, la croissance des cristaux par dépôt de vapeur, la fonte et la collection des hydrométéores, il est montré l'importance de la phase glace et de la morphologie des cristaux dans l'évolution chimique du nuage. Des scénarios de formation nuageuse sont définis à partir de masses d'air continentale et / ou marine, pour voir l'influence de la capacité du nuage à précipiter sur la composition chimique des hydrométéores. Des tests sur la rétention et l'enfouissement pilotant les échanges avec la phase glacée lors du givrage et de la croissance par dépôt de vapeur respectivement ont été menés pour conclure au rôle majeur joué par la glace dans le bilan des espèces traces
|
2 |
Développement et évaluation d’un modèle explicite de formation d’aérosols organiques secondaires : sensibilité aux paramètres physico-chimiques / Development of an explicit modelling tool of secondary organic aerosols formation : sensitivity to physico-chemical parametersValorso, Richard 19 December 2011 (has links)
Les aérosols fins ont un impact environnemental primordial. Ils influencent notamment la santé, ont un impact sur la visibilité et le climat. Les Aérosols Organiques Secondaires (AOS) représentent une fraction importante des aérosols fins. Les AOS résultent de la conversion d'espèces gazeuses, formées au cours de l'oxydation des composés organiques volatils (COV), en particules par des processus de nucléation et/ou condensation sur des aérosols préexistants. L'oxydation gazeuse des COV implique une myriade de composés secondaires intermédiaires pouvant participer à la formation d'AOS. Les AOS regroupent ainsi une très grande variété d'espèces. Afin d'étudier la formation d'AOS, il est nécessaire de développer des schémas chimiques décrivant explicitement la formation des composés secondaires. Le LISA a développé en collaboration avec le NCAR (National Center of Atmospheric Research) un générateur de schémas chimiques d'oxydation des composés organiques volatils : le GECKO-A (Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere). Ce travail vise à tester (i) la fiabilité de GECKO-A à reproduire les concentrations d'AOS observées lors d'expériences en chambre de simulation atmosphérique (CSA) et (ii) la sensibilité de la formation d'AOS aux paramètres physico-chimiques tels que les pressions de vapeur saturante, effets de parois des CSA ou encore aux constantes cinétiques de réaction. Afin d'évaluer la pertinence des schémas chimiques générés avec GECKO-A, le modèle a été confronté à des expériences effectuées en CSA visant à évaluer la formation d'AOS. Le paramètre clé du partitionnement des composés organiques semi-volatils est la pression de vapeur saturante (Pvap) des espèces. Les trois méthodes considérées comme les plus fiables disponibles dans la littérature ont été implémentées dans GECKO-A afin de tester la sensibilité de la formation d'AOS à l'estimation des Pvap. Les pressions de vapeur saturantes estimées par les différentes méthodes présentent des valeurs très différentes s'étalant sur plusieurs ordres de grandeur. Malgré ces divergences marquées, la concentration et la spéciation simulées pour l'AOS s'avèrent en définitive peu sensibles à la méthode utilisée pour estimer les pressions de vapeur. Aucune méthode d'estimation de Pvap n'a par ailleurs permis de réconcilier les concentrations modélisées et observées. La concentration d'AOS demeure systématiquement surestimée de l'ordre d'un facteur 2. L'absorption des composés organiques gazeux semi-volatils sur les murs d'une chambre de simulation atmosphérique a ensuite été étudiée. L'intégration de ce processus dans le modèle conduit à diminuer de façon importante les concentrations simulées en AOS, jusqu'à un facteur 2. En outre, les rendements simulés après implémentation de ce processus apparaissent en bon accord avec les rendements mesurés en CSA. L'hypothèse d'une mauvaise représentation de certains processus en phase gazeuse a également été testée via des tests de sensibilité. En particulier, la sensibilité de la formation d'AOS aux constantes de réactions entre les COV et le radical OH a été explorée. Le système a montré une grande sensibilité à la variabilité des constantes cinétiques de réaction des COV avec le radical OH, que ce soit au niveau de l'estimation de la constante cinétique ou au niveau de la détermination du site d'attaque du radical OH. La sensibilité à l'estimation des constantes de décomposition des radicaux alkoxyles a également été testée. Cette étude n'a en revanche montré que peu d'effets sur le rendement en AOS formé / Fine aerosols have an important impact on health, visibility and climate. Secondary Organic Aerosols (SOA) represent an important fraction of fine aerosol composition. SOA are formed by nucleation or condensation onto pre-existing particles of gaseous species formed during the oxidation of emitted volatile organic compounds (VOC). VOC oxidation implies a huge number of secondary intermediates which are potentially involved in SOA formation. In order to study SOA formation, it is necessary to develop chemical schemes describing explicitly the formation and condensation of the gaseous secondary intermediates. The LISA has thus developed in collaboration with NCAR (National Center of Atmospheric Research) a generator of explicit chemical schemes : GECKO-A (Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere). This work aims at testing (i) the reliability of GECKO-A to simulate observed SOA concentrations in Atmospheric Simulation Chamber (ASC) and (ii) exploring the SOA sensitivity to physico-chemical parameters such as saturation vapour pressures, chamber walls effects or kinetics rate constants. In order to assess GECKO-A's chemical schemes, the model has been confronted to chamber experiments performed to study SOA. Saturation vapour pressure (Pvap) is the key parameter controlling the gas/particles partitioning of organic compounds The three Pvap estimation methods considered as the more reliable in the literature have been implemented in GECKO-A. Pvap estimated by the three methods differs highly, up to several orders of magnitude. Despite of these discrepancies, simulated SOA concentration and speciation show a low sensitivity to the method used to estimate the Pvap. Moreover, none of the methods were able to make the model fit the observations. SOA concentration is systematically overestimated of a factor 2. Semi volatile organic compounds deposition on a chamber walls has been investigated. The implementation of this process in the model leads to a significant decrease of the simulated SOA concentrations, up to factor of 2. Simulated SOA yields are in good agreement with measured SOA yields. The hypothesis of a misrepresentation of some gaseous processes has then been investigated through sensitivity tests. SOA formation sensitivity to COV+ OH reactions rate constants has been explored. Results exhibited a high sensitivity to the rate constants estimations (regarding the rate constants values estimation, as well as the determination of the OH attack sites). The estimated alkoxy radicals decomposition rate constants have also been tested. This test showed however no significant impact on the simulated SOA yields
|
3 |
Développement et évaluation d'un modèle explicite de formation d'aérosols organiques secondaires : sensibilité aux paramètres physico-chimiquesValorso, Richard 19 December 2011 (has links) (PDF)
Les aérosols fins ont un impact environnemental primordial. Ils influencent notamment la santé, ont un impact sur la visibilité et le climat. Les Aérosols Organiques Secondaires (AOS) représentent une fraction importante des aérosols fins. Les AOS résultent de la conversion d'espèces gazeuses, formées au cours de l'oxydation des composés organiques volatils (COV), en particules par des processus de nucléation et/ou condensation sur des aérosols préexistants. L'oxydation gazeuse des COV implique une myriade de composés secondaires intermédiaires pouvant participer à la formation d'AOS. Les AOS regroupent ainsi une très grande variété d'espèces. Afin d'étudier la formation d'AOS, il est nécessaire de développer des schémas chimiques décrivant explicitement la formation des composés secondaires. Le LISA a développé en collaboration avec le NCAR (National Center of Atmospheric Research) un générateur de schémas chimiques d'oxydation des composés organiques volatils : le GECKO-A (Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere). Ce travail vise à tester (i) la fiabilité de GECKO-A à reproduire les concentrations d'AOS observées lors d'expériences en chambre de simulation atmosphérique (CSA) et (ii) la sensibilité de la formation d'AOS aux paramètres physico-chimiques tels que les pressions de vapeur saturante, effets de parois des CSA ou encore aux constantes cinétiques de réaction. Afin d'évaluer la pertinence des schémas chimiques générés avec GECKO-A, le modèle a été confronté à des expériences effectuées en CSA visant à évaluer la formation d'AOS. Le paramètre clé du partitionnement des composés organiques semi-volatils est la pression de vapeur saturante (Pvap) des espèces. Les trois méthodes considérées comme les plus fiables disponibles dans la littérature ont été implémentées dans GECKO-A afin de tester la sensibilité de la formation d'AOS à l'estimation des Pvap. Les pressions de vapeur saturantes estimées par les différentes méthodes présentent des valeurs très différentes s'étalant sur plusieurs ordres de grandeur. Malgré ces divergences marquées, la concentration et la spéciation simulées pour l'AOS s'avèrent en définitive peu sensibles à la méthode utilisée pour estimer les pressions de vapeur. Aucune méthode d'estimation de Pvap n'a par ailleurs permis de réconcilier les concentrations modélisées et observées. La concentration d'AOS demeure systématiquement surestimée de l'ordre d'un facteur 2. L'absorption des composés organiques gazeux semi-volatils sur les murs d'une chambre de simulation atmosphérique a ensuite été étudiée. L'intégration de ce processus dans le modèle conduit à diminuer de façon importante les concentrations simulées en AOS, jusqu'à un facteur 2. En outre, les rendements simulés après implémentation de ce processus apparaissent en bon accord avec les rendements mesurés en CSA. L'hypothèse d'une mauvaise représentation de certains processus en phase gazeuse a également été testée via des tests de sensibilité. En particulier, la sensibilité de la formation d'AOS aux constantes de réactions entre les COV et le radical OH a été explorée. Le système a montré une grande sensibilité à la variabilité des constantes cinétiques de réaction des COV avec le radical OH, que ce soit au niveau de l'estimation de la constante cinétique ou au niveau de la détermination du site d'attaque du radical OH. La sensibilité à l'estimation des constantes de décomposition des radicaux alkoxyles a également été testée. Cette étude n'a en revanche montré que peu d'effets sur le rendement en AOS formé
|
4 |
Développement d'un modèle de chimie multiphase couplé à un modèle de microphysique quasi-spectral : Application à un événement nuageux échantillonné au Puy de DômeLeriche, Maud 08 December 2000 (has links) (PDF)
La présence de nuages influence la capacité oxydante de la troposphère, mais aussi le bilan radiatif de la planète notamment à travers les processus liés à la chimie multiphase qui restent mal connus. Le but de ce travail était d'améliorer notre compréhension des processus physico-chimiques au sein des nuages. Pour cela, nous avons développé un modèle numérique de chimie multiphase couplé à un modèle de microphysique (Berry et Reinhardt, 1974), fondé sur le modèle de chimie gazeuse de Madronich et Calvert (1990), le mécanisme réactionnel développé par Jacob (1986), une compilation exhaustive des données de la littérature et des collaborations avec des cinéticiens. Afin d'effectuer le lien nécessaire à la compréhension de la chimie multiphase entre les données de laboratoire et les données de terrain, le modèle dans sa version non couplée a été appliqué dans le cadre d'un événement nuageux échantillonné au Puy de Dôme (Voisin et coll., 2000). Ces résultats montrent en général la capacité du modèle à reproduire les comportements observés et sa capacité d'analyse de la réactivité du système chimique nuageux (Leriche et coll., 2000a). Notamment, une nouvelle voie réactionnelle d'oxydation du S(IV) par l'acide pernitrique en acide fort a été mise en évidence. Finalement, le modèle couplé chimie/microphysique a été appliqué au même événement nuageux sur la base d'un scénario académique afin de quantifier l'influence de la formation de la pluie sur le régime chimique précédemment étudié. Les résultats principaux obtenus (Leriche et coll., 2000b) montrent que la présence de nuages exerce deux effets différents sur la chimie troposphérique : un effet direct de lessivage des espèces chimiques par transfert de masse, solubilité et réactivité, et un effet indirect lié aux transferts microphysiques de l'eau nuageuse en eau précipitante et à la redistribution d'espèces réactives entre l'air interstitiel, l'eau nuageuse et l'eau précipitante.
|
Page generated in 0.0741 seconds