Spelling suggestions: "subject:"hypochlorite""
31 |
Thermobaromètrie des phylloscilicates dans les séries naturelles : conditions de la diagénèse et du métamorphisme de bas degréBourdelle, Franck 22 June 2011 (has links) (PDF)
Les illites et les chlorites sont des minéraux ubiquistes dans la plupart des roches diagénétiques. Leurs compositions chimiques dépendent des conditions physiques subies (pression, P ; température, T) et de la composition de l'encaissant (e.g. Vidal et al., 1999 ; Parra et al., 2002a, 2002b). Ces minéraux peuvent donc potentiellement être de très bons marqueurs de l'histoire de l'enfouissement, et sont à la base de nombreuses méthodes empiriques ou thermodynamiques d'estimation des conditions P-T.Une compilation de données naturelles et la comparaison des thermobaromètres existants ont permis d'établir leurs limitations respectives. Pour s'en affranchir, un nouveau modèle ordonné de solution solide pour les chlorites a été développé, qui rend compte des forts contenus en silicium observés dans les chlorites naturelles de basses températures. La calibration de ce nouveau thermobaromètre sur des domaines géologiques variés de BT-BP a été testée sur des analyses de chlorites naturelles de la Gulf Coast (Texas) au pic de température (où les données P-T ont été mesurées in situ) et montre d'excellents résultats. Concernant les illites, le modèle thermodynamique le plus abouti (Dubacq et al., 2010) a également été testé de manière à estimer sa précision. L'étude a été complétée par la quantification de l'influence du fer ferrique. Les analyses chimiques utilisées ont été obtenues grâce à un protocole analytique à haute résolution spatiale. Alliant FIB et MET-EDS, ce protocole a permis une étude microtexturale et chimique fine des chlorites et des illites. Il en ressort que ces minéraux possèdent une diversité intracristalline dans leurs compositions et que la zonation chimique résultante apparaît comme une potentielle source d'erreurs dans la calibration des thermobaromètres, tout en permettant d'envisager la notion d'équilibre à l'échelle locale.Cette approche a été utilisée pour quantifier les trajets P-T d'unités géologiques des Alpes de Glarus. Ces résultats, comparés à ceux obtenus avec des méthodes thermobarométriques conventionnelles, donnent une bonne image des processus d'enfouissement et d'exhumation des roches de basse température. Ainsi, il apparaît que chaque composition enregistre une portion du chemin P-T rétrograde. D'une manière générale, chaque zone d'un même cristal renvoie à une partie de l'histoire de la roche.
|
32 |
Characteristics and origins of secondary chloritic minerals in the Tertiary basaltic rocks from Taiwan.Ho, You-Hua 26 July 2010 (has links)
Chlorite and corrensite are very common secondary minerals in very low-grade metamorphic or hydrothermally altered mafic rocks. Corrensite, although defined as a 1:1 regularly mixed-layered chlorite/smectite or chlorite/vermiculite, has been considered as a unique mineral phase and might thus be a potential index mineral for evaluating very low metamorphic grade. Many lenticular basaltic rocks, which are intercalated with unmetamorphosed to low-grade metamorphosed Tertiary sedimentary rocks, occur sporadically in the Western foothills and the Central Range in Taiwan. The lenticular basaltic rocks in the Western foothills (diagenetic zone) and the western flank of the Central Range (anchizone to epizone) were subjected to different degrees of hydrothermal alteration and/or metamorphism. However, only few occurrences of corrensite in these basaltic rocks were reported. In the present study, the occurrences and mixed-layering features of corrensite and coexisting chloritic minerals in the basaltic rocks were characterized by utilizing optical microscopy, X-ray diffraction, scanning electron microscopy with energy dispersive spectrometry, and transmission electron microscopy (TEM). The results showed that most of these basaltic rocks contain abundant chloritic minerals occurring as replacements of mafic minerals or interstitial glass, or as vein- or vesicle-filling materials. The chloritic minerals include smectite, corrensite, chlorite, mixed-layered chlorite/smectite, or mixed-layered chlorite/corrensite. The compositions of chlorite, corrensite, and smectite are distinctive in terms of their Si/Al ratios, interlayer cations, and total cation numbers. Corrensite, chlorite, and mixed-layered chlorite/corrensite are common secondary mineral assemblages in the anchizone basaltic rocks, whereas only discrete chlorite occur in the epizone. The basaltic rocks in the diagenetic zone contain different assemblages, such as smectite only, chlorite + smectite + mixed-layered chlorite/smectite + mixed-layered chlorite/corrensite, or chlorite + corrensite + mixed-layered chlorite/corrensite. These different assemblages of chloritic minerals and other secondary mineral assemblages might reflect different stages of hydrothermal alteration. Corrensite was positively identified with TEM lattice-fringe imaging in the diagenetic rocks collected from Nangang, Poneikeng, Shanzijiao, Nanshihjiao, Hsiungkong, Shihsiouping, Fusing, and Northern Shihmen Reservoir areas, and in the studied anchizone rocks from Junghua, Kaopo and Baolai areas. The disappearance of corrensite clearly marks the boundary between the anchizone and epizone basaltic rocks. Corrensite, as a chemically and structurally unique mineral phase, is therefore a potential index mineral in very low-grade metamorphic rocks.
|
33 |
Characterization and prediction of reservoir quality in chlorite-coated sandstones : evidence from the Late Cretaceous Lower Tuscaloosa Formation at Cranfield Field, Mississippi, U.S.A.Kordi, Masoumeh 08 November 2013 (has links)
The effectiveness of CO₂ injection in the subsurface for storage and EOR are controlled by reservoir quality variation. This study determines the depositional processes and diagenetic alterations affecting reservoir quality of the Lower Tuscaloosa Formation at Cranfield Field. It also determines the origin, time and processes of the grain-coating chlorite and its impacts on reservoir quality. Moreover, by integrating depositional and diagenetic characteristics and by linking them to sequence stratigraphy, the distribution of reservoir quality, could be predicted within a sequence stratigraphic framework. The studied sandstones are composed of medium to coarse-grained, moderately sorted litharenite to sublitharenite with composition of Q76.1F0.4L23.5. Depositional environment of this formation in the Mississippi Interior Salt Basin is interpreted as incised-valley fluvial fill systems. The cross sections and maps at the field show trend of the sandy intervals within channels with a NW-SE paleocurrent direction. During burial of the sandstones, different digenetic alterations including compaction, dissolution, replacement and cementation by chlorite, quartz, carbonate, kaolinite, titanium oxides, pyrite and iron-oxide modified the porosity and permeability. Among these, formation of chlorite coats plays the most important role in reservoir quality. The well-formed, thick and continuous chlorite coatings in the coarser grain sandstones inhibited formation of quartz overgrowth, resulted in high porosity and permeability after deep burial; whereas the finer grain sandstones with the poorly-formed, thin and discontinuous chlorite coatings have been cemented by quartz. The optimum amount of chlorite to prevent formation of quartz overgrowths is 6% of rock volume. The chlorite coats are composed of two layers including the inner chlorite layer formed by transformation of the Fe-rich clay precursors (odinite) through mixed-layer clays (serpentine-chlorite) during early eodiagenesis and the outer layer formed by direct precipitation from pore waters through dissolution of ferromagnesian rock fragments during late eodiagenesis to early mesodiagenesis. In the context of the reservoir quality prediction within sequence stratigraphic framework, the late LST and early TST are suitable for deposition of chlorite precursor clays, which by progressive burial during diagenesis could be transformed to chlorite, and thus results in preserving original porosity and permeability in deep burial. / text
|
34 |
A Cloritização na Mina Uruguai, Minas do Camaquã/RS-BrasilTroian, Guilherme Casarotto January 2009 (has links)
A região das Minas do Camaquã é parte constituinte da Bacia do Camaquã, a qual possui direção NE-NW e é preenchida por sedimentos siliciclásticos intercalados com rochas vulcânicas. A clorita é o argilomineral mais abundante na área, ocorrendo em grande quantidade nos halos de alteração hidrotermal presentes nas rochas encaixantes das mineralizações. O presente trabalho consiste na caracterização petrológica, química e estrutural das cloritas, que fornecem importantes informações sobre diferentes processos e condições de formação do ambiente hidrotermal. Para isso se realizou petrografia óptica, difratometria de raios X, modelamento dos difratogramas através do programa Reynolds Newmod©, e microscopia eletrônica de varredura em amostras representativas de diferentes zonas de alteração hidrotermal identificadas. As cloritas se apresentam com três diferentes tendências: A Clorita I ocorre com aspecto pervasivo sobre a matriz das rochas localizadas próximo aos filões mineralizados. É classificada como Fe-clinocloro, apresenta na fração <1μm predominância do polítipo IIb e um enriquecimento em Mg2+ e na fração <10μm predominância do politipo Ib (900) e enriquecimento em Fe2+; a Clorita II ocorre como veios preenchendo pequenas fraturas. É classificada como Chamosita e apresenta polítipo estrutural IIb; e a Clorita III ocorre alterando minerais detríticos sendo classificada como Mg-chamosita. A variação na quantidade de ferro das cloritas geradas por processos hidrotermais (Clorita I <10 μm e clorita II) fornecem indícios da ocorrência de pelo menos dois pulsos no processo de alteração hidrotermal: um responsável pela intensa alteração da matriz e dos clastos das rochas e outro responsável pela geração dos veios tardios. A variação na quantidade de Fe2+ dos dois diferentes fluidos responsáveis pela cristalização das cloritas fica evidenciada pela associação de co-geneticidade da Clorita II com a hematita, mostrando que o fluido final foi muito mais enriquecido em ferro que o fluido precoce que cristalizou a Clorita I <10 μm. / The region of the Camaquã Mines is a constitutional part of the Camaquã Basin and is accomplished by silliciclastics sediments intercalated with volcanic rocks. Chlorite is the most abundant clay mineral, occurring in great amounts on the hydrothermal alteration halos present in the host rocks of mineralizations. This work consists on the petrologic, chemical and structural characterization of chlorites, which provide important information about different processes and formation conditions of the hydrothermal environment. It was made optical petrography, X ray diffraction, difractograms modeling, and scanning electron microscopy in representative samples of the different hydrothermal alteration zones identified. The chlorites are presented in three different trends: The Chlorite I occurs with pervasive aspect in the hydrothermal alteration halos. It is classified as Fe-clinoclore, and presents in the fraction <1μm the predominance of polytype IIb and an enrichment in Mg2+ and in the fraction <10μm the predominance of the polytype Ib (900) and enrichment in Fe2+; The Chlorite II occurs as veins filling small fractures. It is classified as Chamosite and presents structural polytype IIb; and the Chlorite III occurs altering detritic minerals is classified as Mg-chamosite. The variation on the amount of Fe2+ of the chlorites generated by hydrothermal processes (Chlorite I < 10 μm and Chlorite II) provides indications of the occurrence of at least two pulses on the hydrothermal alteration process: one responsible for the intense alteration of the matrix and clasts of the rocks and the other responsible for the generation of the late veins. This variation on the amount of Fe2+ is evidenced by the co-geneticity association of the Chlorite II with the hematite, showing that the final fluid was much more enriched in iron than the early fluid that crystallized the Chlorite I < 10 μm.
|
35 |
A Cloritização na Mina Uruguai, Minas do Camaquã/RS-BrasilTroian, Guilherme Casarotto January 2009 (has links)
A região das Minas do Camaquã é parte constituinte da Bacia do Camaquã, a qual possui direção NE-NW e é preenchida por sedimentos siliciclásticos intercalados com rochas vulcânicas. A clorita é o argilomineral mais abundante na área, ocorrendo em grande quantidade nos halos de alteração hidrotermal presentes nas rochas encaixantes das mineralizações. O presente trabalho consiste na caracterização petrológica, química e estrutural das cloritas, que fornecem importantes informações sobre diferentes processos e condições de formação do ambiente hidrotermal. Para isso se realizou petrografia óptica, difratometria de raios X, modelamento dos difratogramas através do programa Reynolds Newmod©, e microscopia eletrônica de varredura em amostras representativas de diferentes zonas de alteração hidrotermal identificadas. As cloritas se apresentam com três diferentes tendências: A Clorita I ocorre com aspecto pervasivo sobre a matriz das rochas localizadas próximo aos filões mineralizados. É classificada como Fe-clinocloro, apresenta na fração <1μm predominância do polítipo IIb e um enriquecimento em Mg2+ e na fração <10μm predominância do politipo Ib (900) e enriquecimento em Fe2+; a Clorita II ocorre como veios preenchendo pequenas fraturas. É classificada como Chamosita e apresenta polítipo estrutural IIb; e a Clorita III ocorre alterando minerais detríticos sendo classificada como Mg-chamosita. A variação na quantidade de ferro das cloritas geradas por processos hidrotermais (Clorita I <10 μm e clorita II) fornecem indícios da ocorrência de pelo menos dois pulsos no processo de alteração hidrotermal: um responsável pela intensa alteração da matriz e dos clastos das rochas e outro responsável pela geração dos veios tardios. A variação na quantidade de Fe2+ dos dois diferentes fluidos responsáveis pela cristalização das cloritas fica evidenciada pela associação de co-geneticidade da Clorita II com a hematita, mostrando que o fluido final foi muito mais enriquecido em ferro que o fluido precoce que cristalizou a Clorita I <10 μm. / The region of the Camaquã Mines is a constitutional part of the Camaquã Basin and is accomplished by silliciclastics sediments intercalated with volcanic rocks. Chlorite is the most abundant clay mineral, occurring in great amounts on the hydrothermal alteration halos present in the host rocks of mineralizations. This work consists on the petrologic, chemical and structural characterization of chlorites, which provide important information about different processes and formation conditions of the hydrothermal environment. It was made optical petrography, X ray diffraction, difractograms modeling, and scanning electron microscopy in representative samples of the different hydrothermal alteration zones identified. The chlorites are presented in three different trends: The Chlorite I occurs with pervasive aspect in the hydrothermal alteration halos. It is classified as Fe-clinoclore, and presents in the fraction <1μm the predominance of polytype IIb and an enrichment in Mg2+ and in the fraction <10μm the predominance of the polytype Ib (900) and enrichment in Fe2+; The Chlorite II occurs as veins filling small fractures. It is classified as Chamosite and presents structural polytype IIb; and the Chlorite III occurs altering detritic minerals is classified as Mg-chamosite. The variation on the amount of Fe2+ of the chlorites generated by hydrothermal processes (Chlorite I < 10 μm and Chlorite II) provides indications of the occurrence of at least two pulses on the hydrothermal alteration process: one responsible for the intense alteration of the matrix and clasts of the rocks and the other responsible for the generation of the late veins. This variation on the amount of Fe2+ is evidenced by the co-geneticity association of the Chlorite II with the hematite, showing that the final fluid was much more enriched in iron than the early fluid that crystallized the Chlorite I < 10 μm.
|
36 |
A Cloritização na Mina Uruguai, Minas do Camaquã/RS-BrasilTroian, Guilherme Casarotto January 2009 (has links)
A região das Minas do Camaquã é parte constituinte da Bacia do Camaquã, a qual possui direção NE-NW e é preenchida por sedimentos siliciclásticos intercalados com rochas vulcânicas. A clorita é o argilomineral mais abundante na área, ocorrendo em grande quantidade nos halos de alteração hidrotermal presentes nas rochas encaixantes das mineralizações. O presente trabalho consiste na caracterização petrológica, química e estrutural das cloritas, que fornecem importantes informações sobre diferentes processos e condições de formação do ambiente hidrotermal. Para isso se realizou petrografia óptica, difratometria de raios X, modelamento dos difratogramas através do programa Reynolds Newmod©, e microscopia eletrônica de varredura em amostras representativas de diferentes zonas de alteração hidrotermal identificadas. As cloritas se apresentam com três diferentes tendências: A Clorita I ocorre com aspecto pervasivo sobre a matriz das rochas localizadas próximo aos filões mineralizados. É classificada como Fe-clinocloro, apresenta na fração <1μm predominância do polítipo IIb e um enriquecimento em Mg2+ e na fração <10μm predominância do politipo Ib (900) e enriquecimento em Fe2+; a Clorita II ocorre como veios preenchendo pequenas fraturas. É classificada como Chamosita e apresenta polítipo estrutural IIb; e a Clorita III ocorre alterando minerais detríticos sendo classificada como Mg-chamosita. A variação na quantidade de ferro das cloritas geradas por processos hidrotermais (Clorita I <10 μm e clorita II) fornecem indícios da ocorrência de pelo menos dois pulsos no processo de alteração hidrotermal: um responsável pela intensa alteração da matriz e dos clastos das rochas e outro responsável pela geração dos veios tardios. A variação na quantidade de Fe2+ dos dois diferentes fluidos responsáveis pela cristalização das cloritas fica evidenciada pela associação de co-geneticidade da Clorita II com a hematita, mostrando que o fluido final foi muito mais enriquecido em ferro que o fluido precoce que cristalizou a Clorita I <10 μm. / The region of the Camaquã Mines is a constitutional part of the Camaquã Basin and is accomplished by silliciclastics sediments intercalated with volcanic rocks. Chlorite is the most abundant clay mineral, occurring in great amounts on the hydrothermal alteration halos present in the host rocks of mineralizations. This work consists on the petrologic, chemical and structural characterization of chlorites, which provide important information about different processes and formation conditions of the hydrothermal environment. It was made optical petrography, X ray diffraction, difractograms modeling, and scanning electron microscopy in representative samples of the different hydrothermal alteration zones identified. The chlorites are presented in three different trends: The Chlorite I occurs with pervasive aspect in the hydrothermal alteration halos. It is classified as Fe-clinoclore, and presents in the fraction <1μm the predominance of polytype IIb and an enrichment in Mg2+ and in the fraction <10μm the predominance of the polytype Ib (900) and enrichment in Fe2+; The Chlorite II occurs as veins filling small fractures. It is classified as Chamosite and presents structural polytype IIb; and the Chlorite III occurs altering detritic minerals is classified as Mg-chamosite. The variation on the amount of Fe2+ of the chlorites generated by hydrothermal processes (Chlorite I < 10 μm and Chlorite II) provides indications of the occurrence of at least two pulses on the hydrothermal alteration process: one responsible for the intense alteration of the matrix and clasts of the rocks and the other responsible for the generation of the late veins. This variation on the amount of Fe2+ is evidenced by the co-geneticity association of the Chlorite II with the hematite, showing that the final fluid was much more enriched in iron than the early fluid that crystallized the Chlorite I < 10 μm.
|
37 |
Alteration assemblage in the lower units of the Uitkomst Complex, Mpumalanga Province, South AfricaSteenkamp, Nicolaas Casper 03 September 2012 (has links)
The Uitkomst Complex is located within the Great Escarpment area close to the town of Badplaas, approximately 300 km due east of Pretoria, in the Mpumalanga Province, South Africa. This complex is believed to represent a layered conduit system related to the 2.06 Ga Bushveld Complex. The succession from the bottom up comprises the Basal Gabbro- (BGAB), Lower Harzburgite- (LHZBG) and Chromitiferous Harzburgite (PCR) Units, collectively referred to as the Basal Units, followed by the Main Harzburgite- (MHZBG), Upper Pyroxenite-(PXT) and Gabbronorite (GN) Units, collectively referred to as the Main Units. The Basal Unit is largely hosted by the Malmani Dolomite Formation, in the Pretoria Group of the Transvaal Supergroup sediments. The Lower Harzburgite Unit contains numerous calc-silicate xenoliths derived from the Malmani Dolomite. The Basal Units host the economically important nickel-bearing sulphide and chromite deposits exploited by the Nkomati Mine. An area of extensive localized talc-chlorite alteration is found in the area delineated for large scale open cast mining. This phenomenon has bearing on the nature and distribution of the sulphide minerals in the Chromitiferous Harzburgite and to a lesser extent the Lower Harzburgite Units. The Basal Unit is comprised of both near pristine areas of mafic minerals and areas of extensive secondary replacement minerals. Of the olivine minerals, only fosterite of magmatic origin is found, the fosterite suffered hydrothermal alteration resulting in replacement of it by serpentine and secondary magnetite. Three different types of diopside are found, the first is a primary magamatic phase, the second is a hybrid “transitional” phase and the third, a skarn phase. Hydrothermal alteration of the matrix diopside led to the formation of actinolite-tremolite pseudomorphs. This secondary tremolite is intergrown with the nickeliferous sulphide grains. Chromite grains are rimmed or replaced by secondary magnetite. Pyrrhotite grains is also rimmed or replaced by secondary magnetite. Talc and chlorite is concentrated in the highly altered rocks, dominating the PCR unit. Primary plagioclase and calcite do not appear to have suffered alteration to the same extent as the other precursor mafic magmatic and hydrothermal minerals. It is suggested that the PCR was the first unit to be emplaced near the contact of the dolomite and shale host rock. The more primitive mafic mineral composition and presence of chromitite attest to this interpretation. The LHZBG and MHZBG units may have been emplaced simultaneously, the LHZBG below and the MHZBG above. Interaction and partial assimilation of the dolomitic country rock led to a disruption of the primary mafic mineralogy, resulting in the preferential formation of diopside at the expense of orthopyroxene and plagioclase. Addition of country rock sulphur resulted in sulphur saturation of the magma and resulted in the observed mineralization. The downward stoping of the LHZBG magma, in a more “passive” pulse-like manner led to the formation of the calc-silicate xenolith lower third of this unit. It is proposed that the interaction with, and assimilation of the dolomitic host rock by the intruding ultramafic magmas of the Basal Units are responsible, firstly, for the segregation of the nickeliferous sulphides from the magma, and secondly for the formation of a carbonate-rich deuteric fluid that affected the primary magmatic mineralogy of the Basal Unit rocks. The fluids released during the assimilation and recrystallization of the dolomites also led to the serpentinization of the xenoliths themselves and probably the surrounding hybrid and mafic- ultramafic host rocks. The CO2-rich fluids migrated up and outward, while the H2O-rich fluids remained confined to the area around the xenoliths and LHZBG unit. The H2O-rich fluid is thought to be responsible for the retrograde metamorphism of the precursor magmatic and metamorphic minerals in the Lower Harzburgite Unit. The formation of an exoscarn within the dolomitic country rocks and a selvage of endoskarn on the contact form an effective solidification front that prevented further contamination of the magma. It is also suggested that these solidification fronts constrained the lateral extent of the conduit. The CO2-enriched deutric fluid was able to migrate up to the PCR unit. Here the fluid was not removed as effectively as in the underlying parts of the developing conduit. This resulted in higher CO2-partial pressures in the PCR unit, and the stabilization of talccarbonate assemblages that extensively replaced the precursor magmatic mineralogy. Intrusion of the magma into the shales, which may have been more susceptible to assimilation and greater stoping, led to a broadening in the lateral extent of the Complex, in the Main units above the trough-like feature occupied by the Basal Units. Late-stage, hydrous dominated fluid migration is inferred to have been constrained to the central part of the conduit. This is demonstrated by the dominance of chlorite in the central part of the Uitkomst Complex in the study area. The Uitkomst Complex was further deformed by later intrusions of dolerite dykes. Weathering of the escarpment led to exposure of the conduit as a valley and oxidation of the surficial exposed rocks. / Thesis (PhD)--University of Pretoria, 2012. / Geology / unrestricted
|
38 |
Mineralisation and biomineralisation of radionuclidesBrookshaw, Diana Roumenova January 2013 (has links)
Management of contamination from industrial activities and wastes from nuclear power generation and weapons development are arguably amongst the greatest challenges facing humanity currently and into the future. Understanding the mobility of toxic radioactive elements is essential for successful remediation strategies and safe management of our nuclear waste legacy (DEFRA, 2008). Interactions between minerals and radionuclides, such as sorption and precipitation, govern the mobility of the contaminants through the subsurface environment. Microbial metabolic processes (redox cycling or release of metabolites) have the potential to affect drastically these abiotic interactions. Microbially-driven mineralisation processes could provide long-term solid-phase-capture solutions to radionuclide contamination problems and support safety cases for geological disposal of radioactive waste. The recent advancements at the intersection between mineralogy, microbiology and radiochemistry were reviewed with the aid of a cluster analysis (Self-Organising Map). This is a relatively novel method of creating a map of the ‘research landscape’ which provides a visual summary of the reviewed literature and can help to identify areas of promising and active research as well as less researched interdisciplinary areas. It is the first time this tool has been applied to research literature on this interdisciplinary topic, and it highlighted the need to gain further understanding of ternary systems including bacteria, minerals and radionuclides. The analysis showed that phyllosilicates are of interest, but few studies have explored the properties of the Fe(II)/Fe(III)-containing micas biotite and chlorite. The ability of model Fe(III)-reducing microorganisms to reduce Fe(III) in biotite and chlorite was demonstrated in batch model systems. In chlorite, approximately 20% and in biotite ~40% of the bulk Fe(III) was transformed to Fe(II) by this reduction. To our knowledge, this is the first study to show the availability of Fe(III) in biotite for such reduction and the ability of the model organism Shewanella oneidensis MR-1 to conserve energy for growth using Fe(III) in biotite as the sole electron acceptor. The microbial Fe(III) reduction led to a decrease in the sorption of Cs and Sr by chlorite, but had very little effect on sorption to biotite. The data indicate that remediation strategies based on microbial Fe(III) reduction may exacerbate the movement of Cs and Sr through strata where sorption is dominated by phyllosilicates, particularly chlorite. While microbial Fe(III) reduction had only a slight effect on the sorption properties of biotite and chlorite, it drastically altered their redox properties. Previously bioreduced biotite and chlorite readily removed Cr(VI), Tc(VII) and Np(V) by surface-mediated reduction. The minerals were also able to reduce U(VI), but solution chemistry affected this reaction, reflecting the complexity of the biogeochemistry of this actinide. Overall, this work highlights the importance of decoupling microbial and geochemical processes in developing a holistic understanding of radionuclide behaviour in the environment. This body of work forms the thesis is entitled ‘Mineralisation and Biomineralisation of radionuclides’, and was prepared by Diana Roumenova Brookshaw for submission in August 2013 for the degree of Doctor of Philosophy to the University of Manchester.
|
39 |
Protolith, Mineralogy, and Gold Distribution of Carbonate Rich Rocks of the Larder Lake Break at Misema River, OntarioHaskett, William 05 1900 (has links)
<p> The Larder Lake Break (LLB) is one of the structures controlling
the location of gold deposits in the Kirland Lake camp. This
intensly carbonated and often strongly foliated zone is part of the
Larder Lake Group as defined by Downs (1980). Protoliths at the LLB
are problematical.
Misema River is a well exposed occurrence of the LLB, showing
chlorite schist, pervasively fuchsite quartz carbonate and syenite dyke
material. It is divided into three sections. Section I samples
indicate an ultramafic protolith as suggested by Jensen Cation plots,
and the section is interpreted as komatiitic flow(s). Section II is
well foliated and shows both ultramafic and calc-alkalic components
which decrease and increase in intensity respectively away from the
section I-section II contact. Section II is interpreted as a polymodal
sediment. Section III is similar chemically and texturally to section
I, and is therefore a komatiitic flow(s).
The intrusion of syenite dykes into section I occurred after
initial carbonatization and defonnation of the flows and associated
sediments.
Radiochemical neutron activation analysis shows all but one
of the syenite dyke samples to contain greater than 10 ppb gold
whereas the other rock types averages approximately 2 ppb. A peak content of 64 ppb occurred at a dyke contact. The high gold contents
clearly originate from the syenite dykes, which also provide a heat
source for a second period of carbonatization. </p> / Thesis / Bachelor of Science (BSc)
|
40 |
Analytical Methods for the Measurement of Chlorine Dioxide and Related Oxychlorine Species in Aqueous SolutionKörtvélyesi, Zsolt 28 June 2004 (has links)
No description available.
|
Page generated in 0.0555 seconds