• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 112
  • 20
  • 16
  • 13
  • 8
  • 8
  • 6
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 242
  • 51
  • 37
  • 36
  • 32
  • 26
  • 26
  • 24
  • 22
  • 21
  • 18
  • 17
  • 16
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Determinants for Stop-Transfer and Post-Import Pathways for Protein Targeting to the Chloroplast Inner Envelope Membrane

Viana, Antonio Americo Barbosa 01 September 2009 (has links)
Chloroplast biogenesis relies on the import of thousands of nuclear encoded proteins into the organelle and proper sorting to their sub-organellar compartment. The majority of nucleus-encoded chloroplast proteins are synthesized in the cytoplasm and imported into the organelle via the Toc-Tic translocation systems of the chloroplast envelope. In many cases, these proteins are further targeted to subcompartments of the organelle (e.g. the thylakoid membrane and lumen or inner envelope membrane) by additional targeting systems that function downstream of the import apparatus. The inner envelope membrane (IEM) plays key roles in controlling metabolite transport between the organelle and cytoplasm, and is the major site of lipid and membrane biogenesis within the organelle. In contrast to the protein import and thylakoid targeting systems, our knowledge of the pathways and molecular mechanisms of protein targeting and integration at the IEM are very limited. Previous reports have led to the conclusion that IEM proteins are transferred to the IEM during protein import via a stop-transfer mechanism. Recent studies have shown that at least two components of the Tic machinery (AtTic40 and AtTic110) are completely imported into the stroma and then re-inserted into the IEM in a post-import mechanism. This led me to investigate the mechanisms and pathways involved in the integration of chloroplast IEM proteins in more detail. I selected candidates (AtTic40 for post-import and IEP37 for stop-transfer) that are predicted to have only one membranespanning helix and adopt the same IEM topology to facilitate my analysis. My studies confirm the existence of both stop-transfer and post-import mechanisms of IEM protein targeting. Furthermore, I conclude that the IEP37 transmembrane domain (TMD) is a stop-transfer signal and is able of diverting AtTic40 to this pathway in the absence of AtTic40 IEM targeting information. Moreover, the IEP37 TMD also functions as a topology determinant. I also show that the AtTic40 targeting signals are context dependent, with evidence that in the absence of specific information in the appropriate context, the AtTic40 TMD behaves as a stop-transfer signal. This is an indication that the stop-transfer pathway is the default mechanism of protein insertion in the IEM.
72

Deletion plastidärer ribosomaler Proteine in Nicotiana tabacum im Kontext reduktiver Genomevolutionund Entwicklung einer Hochdurchsatzplattform zur Analysevon miRNAs in Chlamydomonas reinhardtii / Deletion of plastid ribosomal proteins in Nicotiana tabacum in the context of reductive genome evolution and development of a high throughpout platform for the analysis of miRNAs of Chlamydomonas reinhardtii

Fleischmann, Tobias January 2012 (has links)
Im Rahmen des ersten Teils der vorliegenden Doktorarbeit konnten zwei nicht-essentielle (rps15, rpl36) und fünf essentielle (rps3, rps16, rpl22, rpl23, rpl32) im Plastom von Nicotiana tabacum kodierte Proteine des plastidären Ribosoms bezüglich ihrer Essentialität charakterisiert werden. Diese Gene wurden durch gezielte Knockout-Experimente inaktiviert und die resultierenden Effekte untersucht. Die Ergebnisse lassen einen Rückschluss auf die Lokalisation der Gene der insgesamt sieben untersuchten ribosomalen Proteine zu, die im Plastom mehrerer parasitischer, Plastiden-besitzender Spezies nicht mehr nachweisbar sind. Im Fall von rps15 könnte tatsächlich ein Verlust des Genes stattgefunden haben, im Fall der restlichen Gene ist eher mit einem Transfer in den Nukleus zu rechnen (rpl36 ausgenommen). Dies würde bedeuten, dass die Geschwindigkeit der erfolgreichen Etablierung eines Gentransfers in vielen parasitischen Spezies gegenüber grünen Pflanzen stark erhöht ist. Alle in E. coli nicht-essentiellen Proteine mit Homologen in Plastiden (rps15, rpl33, rpl36) sind auch dort, trotz ~1,5 Milliarden Jahren getrennter Evolution, nicht essentiell. Dieses Ergebnis bestätigt den schon früher festgestellten hohen Konservierungsgrad der bakteriellen und plastidären Translationsmaschinerien. Die Phänotypen der KO-Pflanzen der nicht-essentiellen Gene (rps15, rpl36) weisen auf eine interessante Rolle von S15 während der Ribosomenassemblierung hin und im Fall von L36 auf eine wichtige funktionelle Rolle im Plastiden-Ribosomen sowie auf eine Involvierung der Plastidentranslation in der Generierung eines retrograden Signals, welches die Blattform zu beeinflussen im Stande ist. Des Weiteren konnte eine Verbindung der Translationsaktivität mit der Ausbildung von Seitentrieben hergestellt werden, die vermutlich auf veränderte Auxinsynthese im Chloroplast zurückzuführen ist. Aus dem Folgeprojekt, bei dem Doppel-KO-Pflanzen nicht-essentieller ribosomaler Proteine erzeugt wurden, lässt sich auf eine relativ große Plastizität der Architektur von Plastidenribosomen schließen. Im zweiten Teil der Arbeit konnte erfolgreich ein Hochdurchsatz-Screeningsystem zur semiquantitativen Analyse von 192 verschiedenen miRNAs aus Chlamydomonas reinhardtii etabliert werden. Es gelang durch die Untersuchung von 23 verschiedenen Wachstums- und Stressbedingungen sowie Entwicklungsstadien mehrere miRNAs zu identifizieren, die eine differenzielle Expression zeigen sowie unter allen untersuchten Bedingungen konstant bleibende miRNAs nachzuweisen. Dadurch konnten mehrere vielversprechende Kandidaten-miRNAs ausgemacht werden, die nun eingehender untersucht werden können. / Plastid genomes of higher plants contain a conserved set of ribosomal protein genes. Although plastid translational activity is essential for cell survival in tobacco (Nicotiana tabacum), individual plastid ribosomal proteins can be nonessential. Candidates for nonessential plastid ribosomal proteins are ribosomal proteins identified as nonessential in bacteria and those whose genes were lost from the highly reduced plastid genomes of nonphotosynthetic plastid-bearing lineages (parasitic plants, apicomplexan protozoa). Here we report the reverse genetic analysis of seven plastid-encoded ribosomal proteins that meet these criteria. We have introduced knockout alleles for the corresponding genes into the tobacco plastid genome. Five of the targeted genes (ribosomal protein of the large subunit22 [rpl22], rpl23, rpl32, ribosomal protein of the small subunit3 [rps3], and rps16) were shown to be essential even under heterotrophic conditions, despite their loss in at least some parasitic plastid-bearing lineages. This suggests that nonphotosynthetic plastids show elevated rates of gene transfer to the nuclear genome. Knockout of two ribosomal protein genes, rps15 and rpl36, yielded homoplasmic transplastomic mutants, thus indicating nonessentiality. Whereas Δrps15 plants showed only a mild phenotype, Δrpl36 plants were severely impaired in photosynthesis and growth and, moreover, displayed greatly altered leaf morphology. This finding provides strong genetic evidence that chloroplast translational activity influences leaf development, presumably via a retrograde signaling pathway. In the second project a qRT-PCR based plattform for the analysis of miRNAs in Chlamydomonas reinhardtii has been developed. 20 different growth conditions have been scanned.
73

Genetic mapping of nuclear suppressors of splicing-deficient chloroplast introns, and a novel rhodanese-domain protein required for chloroplast translation in Chlamydomonas

Luo, Liming, 1967- 27 January 2011 (has links)
Although many group I (GI) introns can self-splice in vitro, their splicing is promoted by proteins in vivo. Only a few splicing factors that specifically promote GI intron splicing have been identified, however, none are from chloroplasts, which is the subject of this study. In previous work from our lab, a strategy was developed to identify splicing factors for chloroplast GI introns of Chlamydomonas by using suppressor genetics. A mutant with reduced splicing of the chloroplast 23S rRNA intron (Cr.LSU) was generated. Then, 3 nuclear suppressors (7120, 71N1 and 7151) with substantially restored splicing of Cr.LSU were isolated and partially characterized. However, the suppressor gene(s) were not identified. In this study, I have used genetic mapping to make a renewed attempt to isolate these genes. Using polymorphisms between the 137C strain that was used for suppressor isolation, and a new strain of C.reinhardtii (S1D2), the nuclear suppressor mutations in 7120 and 71N1 were mapped to a region on chromosome III that is essentially devoid of recombination. Based on the recombination maps, the suppressor gene in 7120 is located within a ~418-kb region from bp 2,473,064 to 2,891,232, whereas the suppressor in 71N1 is likely located within a ~236-kb subregion from bp 2,473,064 to 2,709,377. It is possible that these mutations are in the same gene; however, the maps could not be refined further due to the lack of recombination in this 418-kb region. I also attempted to compare the genomic sequence of the 7120 suppressor, which was obtained by next-generation sequencing, with the Chlamydomonas reference genome (JGI, v.4). Next-generation sequencing of 7120 revealed the existence of abundant repetitive sequences and transposable elements clustered in a ~40-kb subregion of the recombinationally suppressed 418-kb region on chromosome III. I suggest that the high frequency of repetitive sequences and transposable elements in this region may be the reason for the suppressed recombination. Searching for candidate genes in the mapped region led me to examine a novel protein that was predicted to have a putative chloroplast transit-peptide, and an RNA binding domain. Further bioinformatic analysis revealed a single rhodanese domain with an active-site cysteine. The protein was expressed in E.coli as the full-length and predicted mature forms, plus a small His-tag. The purified mature protein had rhodanese catalytic activity, based on the fact that it was able to transfer sulfur from thiosulfate to cyanide. Also, western blot analysis with a polyclonal antibody produced in rabbits showed that the cellular protein migrated on SDS gels close to the mature protein and faster than the full-length protein, indicative of an organelle-targeted protein. The antibody also showed that the cellular protein co-fractionated with chloroplasts. To gain insight into its in vivo function, the gene was knocked down using the tandem RNAi system (Rohr et al., 2004), which produced strains (5) with reductions of 31% to 76% in the mRNA level, and ~30% to ~60% in the protein level. These strains were sensitive to bright light, and had reduced rates of growth under all conditions, which are characteristics of chloroplast translation mutants. Thus, chloroplast protein synthesis was examined by radioisotope pulse-labeling in the presence of cycloheximide, which showed that the RNAi strains were broadly and negatively affected, and RT-PCR and northern blot revealed only normal chloroplast mRNA levels. These data have identified a new rhodanese-family enzyme that is required for chloroplast translation, which I have designated “CRLT”, for chloroplast rhodanese-like translation. / text
74

Regulace metabolismu cytokininů v rostlinách a chloroplastech tabáku / Regulation of cytokinin metabolism in tobacco plants and chloroplasts

Havlová, Marie January 2011 (has links)
Cytokinins (CKs) are one of the most important group of phytohormones influencing many processes throughout the whole plant. As many processes are regulated both by the light and phytohormones, the first part of this work has been focused on evaluation of diurnal rhytmicity in levels of cytokinins and other cooperating hormones like auxin (indol-3-acetic acid, IAA), abscisic acid (ABA) and polyamines (PA). The changes in activity of selected enzymes participating in metabolism of the above mentioned phytohormones were followed as well. Diurnal variation of phytohormones was tested in tobacco leaves (Nicotiana tabacum L. cv. Wisconsin 38) grown under a 16/8 h (light/dark) period. The main peak of the physiologically active forms of CKs, found after the middle of the light period, coincided well with the maximum of IAA and PA levels and with activity of the corresponding enzymes. The achieved data indicate that metabolism of CKs, IAA and PAs is tightly regulated by the circadian clock. The other part of the study has been focused on changes in the contents of CKs, IAA and ABA in transgenic tobacco plants with altered cytokinin metabolism, achieved via the over-expression of particular enzymes participating in CK metabolism (biosynthesis, degradation and reversible conjugation). As CKs are known to be...
75

Nucleotide-Dependent Processes in the Thylakoid Lumen of Plant Chloroplasts

Lundin, Björn January 2008 (has links)
Plants, algae and photosynthetic bacteria are able to harvest the sunlight and use its energy to transform water and carbon dioxide to carbohydrate molecules and oxygen, both important to sustain life on Earth. This process is called photosynthesis and is the route by which almost all energy enters the biosphere. As most simple things in life, the process of photosynthesis is easily explained but unfortunately not that easy to reproduce. If we could, we would be living in a much different world with almost unlimited energy. Light energy is harvested by chlorophyll molecules, bound to proteins in the chloroplast thylakoid membrane and drives the oxygen-evolving complex, to extract electrons from water. Electrons are then transferred to NADPH through photosystem II (PSII) to cytochrome b6f and photosystem I, the major photosynthetic protein complexes. The cytochrome b6f complex also transfers protons into the lumenal space of the thylakoid. These protons together with those from water oxidation create an electrochemical gradient across the thylakoid membrane, which fuels the ATP synthase to produce ATP. ATP, NADPH and carbon dioxide are used during the dark reactions to produce sugars in the chloroplast stroma. The thylakoid lumenal space where the water oxidation occurs has until recently been viewed as a proton sink with very few proteins. With the publication of the genome of Arabidopsis thaliana it seems to be a much more complex compartment housing a wide variety of biochemical processes. ATP is a nucleotide and the major energy currency, but there are also other nucleotides such as AMP, ADP, GMP, GDP and GTP. Chloroplast metabolism has mostly been associated with ATP, but GTP has been shown to have a role in integration of light harversting complexes into the thylakoid. In this work, we have demonstrated the occurrence of nucleotide-dependent processes in the lumenal space of spinach by bringing evidence first for nucleotide (ATP) transport across the thylakoid membrane, second for nucleotide inter-conversion (ATP to GTP) by a nucleoside diphosphate kinase, and third the discovery that the PsbO extrinsic subunit of PSII complex can bind and hydrolyse GTP to GDP. The active PSII complex functions as a dimer but following light-induced damage, it is monomerised allowing for repair of its reaction center D1 protein. PsbO is ubiquitous in all oxygenic photosynthetic organisms and together with other extrinsic proteins stabilises the oxygen-evolving complex. We have modelled the GTP-binding site in the PsbO structure and showed that the GTPase activity of spinach PsbO induces changes in the protein structure, dissociation from the complex and stimulates the degradation of the D1 protein, possibly by inducing momerisation of damaged PSII complexes. As compared to spinach, Arabidopsis has two isoforms of PsbO, PsbO1 and PsbO2, expressed in a 4:1 ratio. A T-DNA insertion knockout mutant of PsbO1 showed a retarded growth rate, pale green leaves and a decrease in the oxygen evolution while a PsbO2 knockout mutant did not show any visual phenotype as compared to wild type. Unexpectedly, during growth under high light conditions the turnover rate of the D1 protein was impaired in the PsbO2 knockout, whereas it occurred faster in the PsbO1 knockout as compared to wild type. We concluded that the PsbO1 protein mainly functions in stabilizing the oxygen evolving complex, whereas the PsbO2 protein regulates the turnover of the D1 protein. The two PsbO proteins also differ in their GTPase-activity (PsbO2 >> PsbO1). Although their amino acid sequences are 90% identical, they differ in the GTP-binding region which could explain the difference in their GTPase activity. Based on these data, we propose that the GTPase activity of PsbO(2) leads to structural changes in interacting loops and plays a role in the initial steps of D1 turnover such as the PSII monomerisation step. The nucleotide-dependent processes we discovered in the thylakoid lumen raise questions of transporters to facilitate these processes. As stated earlier, we provided biochemical evidence of an ATP thylakoid transporter, and most recently have identified a transporter that may be important for the export of lumenal phosphate back to the stroma. More transporters for GDP, metal ions and others solutes have still to be identified.
76

In vivo Analysis of the Role of FtsZ1 and FtsZ2 Proteins in Chloroplast Division in Arabidopsis thaliana

Johnson, Carol 2012 May 1900 (has links)
Chloroplasts divide by a constrictive fission process that is regulated by FtsZ proteins. Given the importance of photosynthesis and chloroplasts in general, it is important to understand the mechanisms and molecular biology of chloroplast division. An FtsZ gene is known to be of prokaryotic origin and to have been transferred from a symbiont's genome to host genome via lateral transfer. Subsequent duplication of the initial FtsZ gene gave rise to the FtsZ1 and FtsZ2 genes and protein families in eukaryotes. These proteins co-localize mid-chloroplast to form the Z-ring. Z-ring assembly initiates chloroplast division, and it serves as a scaffold for other chloroplast division proteins. Little is known, however, about the FtsZ protein subunit turnover within the Z-ring, the effects of accessory proteins on Z-ring turnover assemblies, as well as the in vivo ultrastructure of the Z-ring in plants. To investigate the Arabidopsis thaliana FtsZ subunit turnover rate within the Z-ring, a section of the Z-ring in the chloroplasts of living plants expressing fluorescently tagged FtsZ1 or FtsZ2 proteins was photobleached and the recovery rate was monitored. The results show that the fluorescence recovery half times for the FtsZ1 and FtsZ2 proteins are 117s and 325s, respectively. This is significant as these data mirror their differences in GTP hydrolysis rates. To elucidate in vivo structure and ultrastructure of the Z-ring, a protocol was established that maintained fluorescence during high pressure freezing, freeze substitution and low temperature embedding. Afterwards, a correlative microscopy approach was employed to visualize and identify fluorescently labeled puncta, circular structures, at the light microscopy level. These puncta were further resolved as mini-rings using optical microscopy eXperimental (OMX) superresolution microscopy. Electron microscopy (EM) analysis imaged mini-rings and filament assemblies comprised of dense subunits. Electron tomography (ET) showed mini-rings composed of protofilaments.
77

Dual-Targeting of NADP<sup>+</sup>-Isocitrate Dehydrogenase

McKinnon, John David 01 April 2009
Many mitochondrial and chloroplast proteins are encoded in the nucleus and subsequently imported into the organelles via active protein transport systems. While usually highly specific, some proteins are dual-targeted to both organelles. In tobacco (<i>Nicotiana tabacum L.</i>), the cDNA encoding the mitochondrial isoform of NADP+-dependent isocitrate dehydrogenase (NADP+-ICDH) contains two translational ATG start sites, indicating the possibility of two tandem targeting signals. In this work the putative mitochondrial and chloroplastic targeting signals from NADP+-ICDH were fused to a yellow fluorescent protein (YFP) to generate a series of constructs and introduced into tobacco leaves by <i>Agrobacterium</i>-mediated transient transfection. The subsequent sub-cellular locations of the ICDH:YFP fusion proteins were then examined under the confocal microscope. Constructs predicted to be targeted to the chlroplast all localized to the chloroplast. However, this was not the case for constructs that were predicted to be mitochondrial targeted. While some constructs localized to mitochondria, others appeared to be chloroplast localized. This was attributed to an additional 50 amino acid residues of the mature NADP+-ICDH protein which was present in those constructs. In addition, during the process of generating these constructs our sequence analysis indicated a stop codon present at amino acid position 161 of the mature NADP+-ICDH protein from both Xanthi and Petit Havana cultivars of tobacco. This was confirmed by multiple sequencing reactions and created discrepancies with the reported sequence present in the database. The results of this study raise interesting questions with regard to the targeting and processing of NADP+-ICDH.
78

Dual-Targeting of NADP<sup>+</sup>-Isocitrate Dehydrogenase

McKinnon, John David 01 April 2009 (has links)
Many mitochondrial and chloroplast proteins are encoded in the nucleus and subsequently imported into the organelles via active protein transport systems. While usually highly specific, some proteins are dual-targeted to both organelles. In tobacco (<i>Nicotiana tabacum L.</i>), the cDNA encoding the mitochondrial isoform of NADP+-dependent isocitrate dehydrogenase (NADP+-ICDH) contains two translational ATG start sites, indicating the possibility of two tandem targeting signals. In this work the putative mitochondrial and chloroplastic targeting signals from NADP+-ICDH were fused to a yellow fluorescent protein (YFP) to generate a series of constructs and introduced into tobacco leaves by <i>Agrobacterium</i>-mediated transient transfection. The subsequent sub-cellular locations of the ICDH:YFP fusion proteins were then examined under the confocal microscope. Constructs predicted to be targeted to the chlroplast all localized to the chloroplast. However, this was not the case for constructs that were predicted to be mitochondrial targeted. While some constructs localized to mitochondria, others appeared to be chloroplast localized. This was attributed to an additional 50 amino acid residues of the mature NADP+-ICDH protein which was present in those constructs. In addition, during the process of generating these constructs our sequence analysis indicated a stop codon present at amino acid position 161 of the mature NADP+-ICDH protein from both Xanthi and Petit Havana cultivars of tobacco. This was confirmed by multiple sequencing reactions and created discrepancies with the reported sequence present in the database. The results of this study raise interesting questions with regard to the targeting and processing of NADP+-ICDH.
79

Expression of vitamin B₁₂ enzymes in Chlamydomonas reinhardtii chloroplast

Zainuddin, Zarina January 2011 (has links)
No description available.
80

The ATP synthase from spinach chloroplasts (Spinacea oleracea) improved isolation and purification of the enzyme and conformational changes observed with fluorescent labels /

Kirch, Robert Dale. Unknown Date (has links) (PDF)
University, Diss., 2002--Freiburg (Breisgau).

Page generated in 0.0672 seconds