Spelling suggestions: "subject:"cholinergic""
21 |
Modulation cholinergique à long terme des potentiels évoqués visuels dans le cortex visuel chez le ratKang, Jun-Il January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
22 |
Modulation cholinergique à long terme des potentiels évoqués visuels dans le cortex visuel chez le ratKang, Jun Il January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
|
23 |
Identification des récepteurs cholinergiques impliqués dans le fonctionnement du cortex visuel du rongeurGroleau, Marianne 07 1900 (has links)
Le système cholinergique est impliqué dans les phénomènes d’attention, de mémoire et d’apprentissage et les récepteurs cholinergiques régulent de multiples fonctions du système nerveux central. Néanmoins, leur rôle au niveau de la modulation des propriétés du cortex visuel reste à être établi. L’un des objectifs de cette thèse était d’étudier le rôle des récepteurs muscariniques impliqués dans le fonctionnement normal du cortex visuel. Nous avons pu déterminer que les récepteurs muscariniques sont impliqués dans l’établissement de nombreuses propriétés visuelles telles la taille des champs récepteurs, la sensibilité au contraste, la sélectivité à la fréquence spatiale et la finesse de la connectivité corticale. L’autre objectif était d’identifier les récepteurs cholinergiques impliqués dans la potentiation des capacités visuelles. Nous avons amélioré le traitement cognitif de l’information visuelle par stimulation électrique du télencéphale basal (noyau où sont localisés les corps cellulaires cholinergiques) et par la stimulation cholinergique par le donépézil, un inhibiteur de l’acétylcholinestérase. La combinaison répétée d’une stimulation visuelle et cholinergique (qu’elle soit électrique ou pharmacologique) améliore similairement l’activité corticale visuelle. Toutefois, les récepteurs impliqués ne sont pas les mêmes. Suite à la stimulation pharmacologique, ce sont principalement les récepteurs muscariniques qui influencent l’acuité visuelle de manière tardive et cette modulation est plus précoce lors de la stimulation électrique. Ces résultats démontrent que le couplage répétitif d’une stimulation cholinergique et d’une stimulation visuelle est en mesure d’améliorer l’activité corticale visuelle. Le fait de connaître les récepteurs cholinergiques impliqués permettra dans un futur proche de les cibler directement pour améliorer la fonction corticale. / The cholinergic system is involved in attention, learning and memory and cholinergic receptors regulate multiple functions of the central nervous system. Nevertheless, their role in modulating the properties of the visual cortex remains to be established. One of the objectives of this thesis was to study the role of muscarinic receptors involved in the normal function of the visual cortex. We have been able to determine that the muscarinic receptors are involved in the establishment of many visual properties such as the size of the receptor fields, contrast sensitivity, spatial frequency selectivity and accuracy of the cortical connectivity. The other objective was to identify the cholinergic receptors involved in the potentiation of visual abilities. We improved the cognitive processing of visual information by electrical stimulation of the basal forebrain (the nucleus where the cholinergic cell bodies are located) and by cholinergic stimulation using donepezil, an acetylcholinesterase inhibitor. The repeated combination of visual and cholinergic stimulations (whether electrical or pharmacological) similarly enhances visual cortical activity. However, the receptors involved are not the same. Following the pharmacological stimulation, it is mainly the muscarinic receptors that influence visual acuity with a delay in the receptors expression and this modulation is earlier for the electrical stimulation. These results demonstrate that repetitive coupling of cholinergic stimulation and visual stimulation can enhance visual cortical activity. Knowing the cholinergic receptors involved will allow in a near future to target them directly to improve cortical function.
|
24 |
L’effet d’une potentialisation cholinergique sur la régionalisation et la synchronisation corticale d’un conditionnement visuelLaliberté, Guillaume 12 1900 (has links)
Cette thèse démontre qu’une potentialisation cholinergique durant un conditionnement visuel typique permet de raffiner la réponse et la connectivité des neurones des aires corticales visuelles ainsi que des aires associatives supérieures via un phénomène plastique. Afin de déterminer cet effet sur un conditionnement visuel monoculaire sur la réponse corticale, nous avons utilisé un système d’imagerie calcique à large champ sur des souris adultes exprimant le rapporteur calcique GCaMP6s. La potentialisation cholinergique était causée par l’administration de donepezil (DPZ), un inhibiteur de l’acétylcholinestérase qui dégrade l’acétylcholine.
Cette technique, possédant de bonnes résolutions spatiale et temporelle, a permis l’observation de l’activité neuronale dans les couches supra granulaires du cortex visuel primaire (V1), des aires secondaires (A, AL, AM, LM, PM, RL) ainsi que dans le cortex retrosplénial (RSC). Il a été alors possible de mesurer les modifications d’activité neuronale de ces aires au repos et lors de la présentation de stimulations visuelles, composées de réseaux sinusoïdaux d’orientation et de contraste varié.
La réponse corticale des animaux naïfs est similaire en matière d’amplitude et de sensibilité au contraste pour chacune des orientations de stimulations visuelles présentées. Le conditionnement visuel accompagné de l’administration de DPZ diminue significativement la réponse neuronale évoquée par le stimulus conditionné dans la majorité des aires observés alors qu’il ne modifie pas la réponse à la stimulation non conditionnée. Cet effet n’est pas présent sans potentialisation cholinergique. Il est intéressant de noter qu’un effet sur la corrélation d’activation est observé exclusivement dans les aires de la voie visuelle ventrale. Finalement, le conditionnement monoculaire diminue la corrélation au repos entre les aires visuelles monoculaire et binoculaire de chacun des hémisphères, un effet qui disparaît lors de l’administration du DPZ durant le conditionnement.
En conclusion, nos résultats démontrent une diminution de l’amplitude et de l’étalement de la réponse corticale dans les couches supra-granulaires de PM et de V1 en réponse à notre traitement. Nous suggérons que ces résultats démontrent une diminution de la réponse excitatrice causée par l’augmentation de l’activité inhibitrice en réponse à la stimulation conditionnée. / The cholinergic system of the basal forebrain modulates the visual cortex and enhances visual acuity and discrimination when activated during visual conditioning. As wide-field calcium imaging provides cortical maps with a fine regional and temporal resolution, we used this technique to determine the effects of the cholinergic potentiation of visual conditioning on cortical activity and connectivity in the visual cortex and higher associative areas. Mesoscopic calcium imaging was performed in head-fixed GCaMP6s adult mice during resting state or monocular presentation of conditioned (0.03 cpd, 30°, 100% contrast) or non-conditioned 1Hz-drifting gratings (30°, 50 and 75% contrast; 90°, 50, 75 and 100% contrast), before and after conditioning. The conditioned stimulus was presented 10 min daily for a week. Donepezil (DPZ, 0.3 mg/kg, s.c.), a cholinesterase inhibitor that potentiates cholinergic transmission, or saline were injected prior to each conditioning session and compared to a sham-conditioned group. Cortical maps were established, then amplitude, duration, and latency of the peak response, as well as size of activation were measured in the primary visual cortex (V1), secondary visual areas (AL, A, AM, PM, LM, RL), the retrosplenial cortex (RSC) , and higher cortical areas. Visual stimulation increased calcium signaling in all primary and secondary visual areas, but no other cortices (except RSC). The cortical responses were sensitive to contrast but not to grating orientation. There were no significant effects of sham-conditioning or conditioning alone, but DPZ treatment during conditioning significantly decreased the evoked neuronal activity response for the conditioned stimulus in V1, AL, PM, and LM. The size of activated area and signal-to-noise ratio were affected in some cortical areas. There was no effect for the non-conditioned stimuli. Interestingly, signal correlation appeared only between V1 and the ventral visual pathway and RSC and was decreased by DPZ administration. The resting state activity was slightly correlated and rarely affected by treatments, except between binocular and monocular V1 in both hemispheres. In conclusion, despite the previously observed enhancement of the cortical response of layer 4 after visual conditioning with cholinergic potentiation, mesoscale cortical calcium imaging showed that cholinergic potentiation diminished the cortical activation in layer 2/3 and sharpened the responses to the conditioned visual stimulus in V1 and PM, via a layer-dependent effect.
|
25 |
Nitric oxide signalling in astrocytesWang, Xuewei 06 1900 (has links)
Dans le cerveau, les astrocytes sont les cellules gliales les plus abondantes et elles jouent divers rôles, y compris le maintien des synapses tripartites et la régulation du débit sanguin cérébral (DSC). Le monoxyde d’azote (NO) est une molécule de signal endogène qui a un impact sur la régulation de l'activité synaptique et du DSC. Des études antérieures ont démontré que le NO est produit dans les cellules endothéliales et les neurones par la synthase du monoxyde d’azote endothéliale (eNOS) et neuronale (nNOS), respectivement. Cependant, la source de production de NO dans les astrocytes reste incertaine. Par conséquent, nous proposons que la voie de signalisation NOS constitutive puisse coexister dans les astrocytes et puisse être activée par différents neurotransmetteurs. L'objectif de cette thèse est d'identifier les sources et les activateurs de la production de NO dans les astrocytes corticaux de la souris.
L'identification des isoformes constitutives de NOS effectuée au moyen de la microscopie électronique et d'immunohistochimie a révélé l’expression des eNOS et nNOS dans les astrocytes. Des préparations de culture d'astrocytes et de tranches de cerveau marquées avec du diacétate de 4-amino-5-méthylamino-2',7'-difluorescéine (DAF-FM), un indicateur de NO perméable aux cellules qui devient imperméable une fois à l’intérieur ont été réalisées. Cette fonctionnalité a été mise à profit pour évaluer la production de NO exclusivement dans les astrocytes en utilisant la microscopie confocale à uni- et multi-photons. De plus, des agonistes cholinergiques ou glutamatergiques qui ont la capacité d’augmenter la concentration de Ca2+ intracellulaire peuvent induire une production du NO in vitro et ex vivo dans les astrocytes, qui est supprimée en présence de l'inhibiteur de NOS non sélectif, L-NG -Nitro-arginine. Fait intéressant, la réponse NO à l’acétylcholine était absente chez les souris eNOS-/-, tandis que l'acide trans-1-aminocyclopentane-1,3-dicarboxylique (t-ACPD) a peu affecté la production de NO chez les souris nNOS-/-. Ces résultats impliquent que les eNOS et nNOS astrocytaires peuvent être déclenchés par des cascades d'activation distinctes (cholinergique et glutamatergique métabotrope). En outre, les études sur la mobilisation cytosolique du Ca2+ indiquent l'importance du réticulum endoplasmique comme réservoir de Ca2+ pour la production de NO, et suggèrent aussi une voie de signalisation astrocytaire qui, une fois activée par le t- ACPD, provoque l'efflux de Ca2+ médié par le récepteur à la ryanodine, qui à son tour active les nNOS adjacents et conduit à la production de NO. Par ailleurs, la superfusion de préparations in vitro et ex vivo avec du N-Méthyl-D-aspartate (NMDA) a provoqué une augmentation du NO tant dans les souris eNOS-/- que nNOS-/-, ce qui indique l'implication des eNOS et nNOS astrocytaires. La production de NO a été atténuée par l'inhibition du complexe PSD-95 / nNOS ce qui suggère que le récepteur NMDA astrocytaire rend fonctionnelle la cassette de signalisation NR2B/PSD-95/nNOS.
En conclusion, nos résultats démontrent que : i) les astrocytes corticaux expriment à la fois eNOS et nNOS; ii) la nNOS cytosolique colocalise avec les récepteurs 2 et 3 de la ryanodine, alors que les nNOS membranaires colocalisent avec le récepteur NMDA contenant le NR2B; iii) la stimulation neuronale a la capacité d'induire la production de NO par les eNOS et nNOS astrocytaires par des voies de signalisation différentes; iv) l'activation des nNOS cytosoliques nécessite une activation des récepteurs à la ryanodine. Collectivement, ces données suggèrent une production de NO compartimentée et spécifique après une stimulation neuronale probablement dans le but de réguler finement et de façon polarisée les fonctions astrocytaires. Ce travail fournit un nouvel aperçu des conséquences physiologiques pour les fonctions neuronales et vasculaires et améliore notre compréhension de la fonction NO astrocytaire dans le cerveau. / In the brain, astrocytes are the most abundant glial cells and play various roles including maintenance of tripartite synapses and regulation of CBF. An endogenous signal molecule that has a potential to have an effect on regulation of both synaptic activity and CBF is nitric oxide (NO). Previous studies have demonstrated that NO is produced in endothelial cells and neurons by endothelial nitric oxide synthase (eNOS) and neuronal nitric oxide synthase (nNOS), respectively. However, the source of NO production in astrocyte remains uncertain. Therefore, we propose that constitutive NOS signalling pathways may exist in astrocyte and can be activated by different neurotransmitters. The aim of this thesis is to identify the sources and activators of NO production in mouse cortical astrocytes.
Identification of constitutive NOS isoforms done by means of electron microscopy and immunohistochemistry revealed the expression of both eNOS and nNOS in astrocytes. All preparations were performed in astrocyte cultures and brain slice preparations labeled with 4- amino-5-methylamino-2',7'-difluorescein (DAF-FM) diacetate, a cell-permeant NO indicator that becomes cell-impermeable once inside cells. Therefore, I took advantage of this feature to evaluate NO production exclusively in astrocytes using single and multi-photon confocal microscopy. We then tested whether cholinergic and glutamatergic agonists that have the capacity to increase intracellular Ca2+ concentration can induce an increase in astrocytic NO. Both in vitro and ex vivo, NO production levels indicate that cholinergic and glutamatergic stimulations can induce astrocytic NO increases, which was abolished by the non-selective NOS inhibitor L- NG -Nitro-arginine. Moreover, the NO response to ACh was absent in eNOS-/- mice, while trans-1-aminocyclopentane-1,3-dicarboxylic acid (t-ACPD) barely affected NO production in nNOS-/- mice. These results imply that astrocytic eNOS and nNOS can be triggered discretely by distinct activation cascades (cholinergic and metabotropic glutamatergic). Furthermore, studies on cytosolic Ca2+ mobilization point out the importance of the endoplasmic reticulum (ER) Ca2+ as key in the mechanism of NO production, and suggests a signalling pathway that t-ACPD causes IP3Rs to elicit RyRs-mediated Ca2+ efflux, which in turn, activates adjacent nNOS and leads to NO production. Furthermore, superfusion of in vitro and ex vivo preparations with N-Methyl-D-aspartate (NMDA) evoked an increase in NO in eNOS-/- and nNOS-/- mice. The NO production was attenuated through removal of PSD-95/nNOS complex. This result posits that astrocytic NMDA receptor may comprise the functional NR2B/PSD- 95/nNOS signalling cassette.
In conclusion, our findings demonstrate that: i) cortical astrocytes express both eNOS and nNOS; ii) nNOS colocalizes with ryanodine receptor 2 and 3, whereas membrane nNOS colocalizes with NR2B-containing NMDA receptor; iii) neuronal stimulation has the capacity of inducing eNOS- and nNOS-produced NO in astrocytes via different activation signalling; iv) activation of cytosolic nNOS requires the activation of ryanodine receptors. Collectively, these data suggest a compartmentalized and specific NO production following neuronal stimulation probably for a fine and polarized regulation of astrocytic functions. This work provides new insight into physiological consequences for neuronal and vascular functions and ameliorates our understanding of astrocytic NO function in the brain.
|
Page generated in 0.0727 seconds