• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 6
  • 6
  • Tagged with
  • 25
  • 14
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Rôle des récepteurs [alpha]-adrénergiques dans le déclenchement de la fibrillation auriculaire par stimulation nerveuse autonome

Richer, Louis-Philippe January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
12

Rôle des récepteurs [alpha]-adrénergiques dans le déclenchement de la fibrillation auriculaire par stimulation nerveuse autonome

Richer, Louis-Philippe January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
13

Modulation des neurones GABAergiques du mésencéphale ventral

Michel, François January 2003 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
14

Effet de la stimulation cholinergique sur la perception visuelle chez le rat et l'humain : études comportementales et électrophysiologiques

Chamoun, Mira 05 1900 (has links)
Le système cholinergique joue un rôle important dans de nombreuses fonctions cognitives telles que l'attention et l'apprentissage perceptuel. La stimulation pharmacologique du système cholinergique par le donépézil, un inhibiteur de l’acétylcholinestérase, est un moyen efficace pour améliorer les fonctions cognitives et le traitement cortical via les récepteurs muscariniques et nicotiniques. En effet, le donépézil permet l'accumulation d'acétylcholine dans la fente synaptique. Toutefois, l’effet de la stimulation pharmacologique du système cholinergique sur le traitement visuel complexe et l’apprentissage perceptuel n’est pas encore bien défini. L'objectif de cette thèse est d'étudier, d'une part, l'effet de la combinaison d’un entrainement visuel répétitif avec une stimulation cholinergique sur les capacités visuelles chez le rat et l’humain et, d'autre part, l’effet de la stimulation pharmacologique du système cholinergique sur la restauration des capacités visuelles dans un modèle de déficit visuel chez les rats. Nos résultats ont montré qu’un entrainement visuel/cholinergique entraînait : 1) une potentialisation à long terme de la réponse visuelle corticale chez le rat, 2) une récupération plus rapide des capacités visuelles chez la rat suite un écrasement du nerf optique 3) une amélioration de la performance dans une tâche perceptivo-cognitive de haut niveau plus rapide et conservée dans le temps chez les jeunes sujets sains. Le patron d’électroencéphalographie chez le sujet humain pratiquant une tâche d’attention visuelle n’est cependant pas modifié par l’administration d’une dose unique de donépézil. Ensembles, ces résultats soulignent le bénéfice considérable de la combinaison d’une stimulation du système cholinergique lors de l’entrainement visuel répétitif afin d'obtenir des améliorations de la perception visuelle. Cela présente une avenue très intéressante pour la réhabilitation chez les humains. / The cholinergic system plays an important role in many cognitive functions such as attention and perceptual learning. Pharmacological stimulation of the cholinergic system via donepezil, an acetylcholinesterase inhibitor, is an efficient tool for enhancing cognitive functions and cortical processing via muscarinic and nicotinic receptors. In fact, donepezil allows the build-up of acetylcholine in the synaptic cleft. However, whether pharmacological manipulation of the cholinergic system has an effect on complex visual processing and perceptual learning remains unclear. The goal of this thesis is to investigate on the one hand the effect of combining repetitive visual training with cholinergic enhancement on visual capacities in rats and humans and on the other hand the effect of the pharmacological stimulation of the cholinergic system on visual restoration in a model of visual deficit in rats. Our results showed that cholinergic potentiation induces 1) a long-term potentiation of visual cortical response following repetitive visual stimulation, 2) a faster recovery of brightness discrimination in rats with an optic nerve crush, 3) a faster progression of and a sustained performance in a highly demanding perceptual-cognitive task for healthy young humans. However, the EEG pattern for subjects performing a visual attention task is not modified by a single administration of donepezil. Together these results underline the substantial benefice of combining cholinergic enhancement with visual training in order to obtain visual perception improvements, which presents an interesting avenue for visual rehabilitation paradigm in humans.
15

Relations neurodigestives et stimulation vagale basse-fréquence chez le rat anesthésié : implications du système nerveux central et du système immunitaire

Picq, Chloe 29 June 2012 (has links) (PDF)
IntroductionLa neurostimulation vagale (NSV) à haute fréquence (30 Hz) est utilisée commethérapeutique de certaines formes d'épilepsie et de dépression réfractaires aux traitements chezl'Homme. De plus, la NSV à basse fréquence (5 Hz) a été expérimentée avec succès chez l'animalpour traiter différentes inflammations périphériques, notamment digestives. Des travaux récents ontmis en évidence que cet effet anti-inflammatoire est induit par l'activation des fibres efférentesvagales, libérant en périphérie de l'acétylcholine, inhibant la sécrétion des cytokines proinflammatoires.Cette voie est connue sous le nom de voie anti-inflammatoire cholinergique.Toutefois, le mécanisme d'action de la NSV 5 Hz reste mal connu et d'autres voies pourraient êtremises en jeu impliquant le système nerveux central (SNC) et le système immunitaire périphérique.ButLes travaux réalisés ont eu pour objectif d'étudier l'implication du SNC et du systèmeimmunitaire dans la modulation de l'inflammation induite par la NSV basse fréquence chez unmodèle de rat anesthésié. Tout d'abord, afin d'étudier l'implication du SNC lors de la NSV 5 Hz, uneétude d'imagerie par résonance magnétique fonctionnelle (IRMf) a été réalisée sur le rat "sain"anesthésié. Ensuite, une étude a été effectuée sur l'effet de la NSV sur les cellules immunitairesspléniques ainsi que sur le tube digestif chez un modèle de rat "sain" puis chez un modèle de ratatteint d'une colite expérimentale induite par une injection intra-colique d'acide trinitrobenzènesulfonique (TNBS).RésultatsLes données obtenues lors de l'étude d'IRMf ont mis en évidence un rôle important desfibres afférentes vagales; elles modulent certaines structures du SNC qui pourraient participer à larégulation de l'inflammation digestive induite par la NSV 5 Hz. Les études réalisées sur les souspopulationslymphocytaires spléniques ont révélé que d'autres cellules immunitaires que lesmacrophages étaient impliquées lors de la NSV. Chez le modèle de rat "sain", les résultats decytométrie en flux ont montré que la NSV 3h 5 Hz induisait une diminution de l'activation deslymphocytes T CD4 ainsi que du pourcentage de NKT par rapport aux lymphocytes T. Ces résultatssont en faveur d'un rôle de la NSV 3h inhibant l'activation lymphocytaire et jouant un rôle sur les NKTpossédant des propriétés immunorégulatrices. La NSV 3h n'a pas le même effet chez le modèle de ratprésentant une colite. En effet, le dosage de cytokines sécrétées par les splénocytes en culturemontre que la NSV augmente le potentiel de sécrétion d'IL-10 (cytokine anti-inflammatoire) dessplénocytes et plus particulièrement des lymphocytes T CD4 spléniques. Parallèlement, l'effet antiinflammatoirede la NSV a été mis en évidence au niveau du côlon transverse (au-dessus de la zonelésée) par une diminution des ARNm de SOCS3 et du TNF-α et de la myéloperoxidase. Ces donnéesont démontré un rôle de la NSV sur la fonctionnalité des lymphocytes T CD4 spléniques. La NSV 3h 5Hz orienterait la réponse immunitaire vers une réponse anti-inflammatoire en phase d'initiationd'inflammation digestive. De plus, l'effet anti-inflammatoire de la NSV est retrouvé au niveau du tubedigestif au-dessus de la zone lésée (côlon transverse).ConclusionCes données expérimentales montrent que d'autres voies impliquant différents typescellulaires sont susceptibles d'être mises en oeuvre par la NSV basse fréquence. Elle induitl'implication du SNC par l'activation des afférences vagales et des cellules immunitaires spléniquestelles que les lymphocytes T CD4 et les NKT. Un effet anti-inflammatoire de la NSV est retrouvé auniveau du côlon transverse, mais pas au niveau des lésions dans le côlon distal. Ces résultatsprésentent des implications thérapeutiques : la NSV basse fréquence est actuellement en essaiclinique pour être utilisée comme traitement dans la maladie de Crohn.
16

Implication du système cholinergique dans l'altération de la mémoire de travail au cours du vieillissement chez la souris : approche comportementale, pharmacologique et neurofonctionnelle

Vandesquille, Matthias 20 June 2011 (has links)
Nos travaux visaient à réaliser un « modèle rongeur » (souris C57Bl/6) de l’altération de la mémoire de travail (MDT) lors du vieillissement, et comparer le potentiel promnésiant de divers composés pharmacologiques. Nous montrons que des souris âgées (18-19 mois) présentent une sensibilité accrue aux interférences proactives délai-dépendantes dans une épreuve d’alternance spontanée par rapport à des souris jeunes (4-5 mois). Une étude immunohistochimique centrée sur l’activité CREB révèle que les souris âgées présentent une suractivation du cortex préfrontal (CPF) inversement corrélée aux performances. La relation entre le déficit cognitif et la suractivation du CPF est confortée par la restauration des performances suite à l’injection dans le CPF d’un inhibiteur de la kinase activatrice de CREB.L’administration de composés cholinergiques permet de restaurer les capacités mnésiques des souris âgées par des mécanismes bien dissociés. Le donepezil, inhibiteur de l’acétylcholinestérase, augmente l’activation de l’hippocampe, alors que le S 38232, un agoniste des récepteurs nicotiniques α4β2, agit en supprimant la suractivation préfrontale. Finalement, l’utilisation de souris invalidées génétiquement pour la sous-unité β2 révèle des mécanismes de régulation complexes au sein du système cholinergique.Nos travaux démontrent la validité de notre modèle pour l’étude des troubles de la MDT induits par le vieillissement. De plus, ils confortent des études récentes chez l’Homme indiquant un lien important entre la suractivation du CPF et le déclin cognitif lié à l’âge. Au regard de l’effet du S 38232 qui, en diminuant la suractivation préfrontale, permet de restaurer les performances de MDT, le récepteur nicotinique α4β2 apparaît comme une cible potentielle pour le développement de nouvelles stratégies thérapeutiques. / The aim of this study was to realise a “rodent model” (C57Bl/6 mice) of age-related working memory (WM) impairments, and to evaluate the procognitive impact of several pharmacological compounds. We show that compared to young adult mice (4-5 months), aged mice (18-19 months) exhibit an exaggerated vulnerability to delay-dependant interference in a sequential spontaneous alternation task. CREB activity assessed by immunohistochemistry demonstrates that aged mice show an over-activation of the prefrontal cortex (PFC) negatively correlated with behavioural performance. Infusion of an inhibitor of CREB activation into the PFC restores WM performance in aged mice. Both results highlight the link between the PFC over-activation and the age-related cognitive deficit.Pharmacological study reveals that cholinergic compounds restore cognitive performance of aged mice and act differently on brain structures sustaining WM. On one hand, donepezil – an inhibitor of acetylcholinesterase – increases CREB activation of the hippocampus. On the other hand, S 38232 – an agonist of α4β2 nicotinic receptors – decreases the CREB age-induced over-activation of the PFC. Finally, using β2 knock-out mice, we show that the regulation of the cholinergic system is submitted to complex mechanisms.Overall, our experimental set up demonstrates that spontaneous alternation is a valuable model for studying age-related WM impairments. In accordance with human’s findings, our results highlight the link between prefrontal over-activation and the cognitive decline occurring during ageing. Considering that S 38232, by decreasing the CPF over-activation, alleviates the WM deficit observed in aged mice, the α4β2 nicotinic receptor appears to be an efficient target for new therapeutic strategies.
17

Implication des recepteurs nicotiniques α7 dans les deficits mnesiques induits par des injections intra-hippocampiques de peptides amyloïdes-beta (1-42) chez la souris / Role of α7 nicotinic receptors in memory deficits induced by intra-hippocampal injections of β-amyloid peptides (1-42)

Faucher, Pierre 11 December 2015 (has links)
Bien que la maladie d’Alzheimer (MA) soit la cause de démence la plus fréquente, lesmécanismes qui sous-tendent les déficits cognitifs chez les patients restent mal connus.Cependant, les peptides amyloïdes (Aβ) semblent être un acteur majeur impliqué dansl’apparition des troubles mnésiques au cours de l’évolution de la maladie, notamment de parleur capacité à induire un hypofonctionnement du système cholinergique associé au déclinmnésique. Sur la base de ces observations, le rôle joué par les récepteurs cholinergiquesnicotiniques α7 (α7-nAChRs) a été largement étudié, au vue de leur capacité à interagir avecles Aβ, sans toutefois dégager un consensus quant à l’implication de ces récepteurs dans lesdéficits mnésiques induits par les Aβ.Afin d’améliorer notre compréhension quant aux mécanismes sous-tendant les effetsdélétères induits par les Aβ dans les déficits mnésiques, notre travail visait à identifier le rôlejoué par les récepteurs α7-AChRs via une approche comportementale, pharmacologique etmoléculaire. Ainsi, nous avons utilisé un modèle « souris » basé sur des injections de formesoligomériques d’Aβ(1-42) (Aβo(1-42)) dans la région CA1 de l’hippocampe dorsal (dCA1),structure cérébrale impliquée dans les processus mnésiques, atteinte de manière précoce dansla MA et exprimant fortement les récepteurs α7-nAChRs.La première partie de cette étude a consisté à mettre au point et à valider notre modèleanimal d’étude des effets induits par les Aβo(1-42) dans le dCA1 par une approchecomportementale et moléculaire. Nous montrons que les injections répétées d’Aβo(1-42) dans ledCA1 induisent une perturbation spécifique de la mémoire de travail alors que la mémoirespatiale est préservée lorsque les performances mnésiques sont évaluées 7 jours après ladernière injection. Nous avons également montré que cette perturbation de la mémoire detravail est associée à une absence d’activation/phosphorylation de ERK1/2 au sein du réseauhippocampo-frontal et septo-hippocampique. Ces données nous ont permis de valider notremodèle expérimental permettant d’étudier spécifiquement l’impact des Aβo(1-42) dansl’hippocampe dorsal.Dans une seconde partie, nous nous sommes focalisés sur le rôle joué par lesrécepteurs α7-nAChRs dans les perturbations mnésiques induites par les Aβo(1-42). Nosrésultats montrent que (1) les souris KOα7 ne présentent pas de déficits de mémoire de travailconsécutivement aux injections intra-dCA1 d’Aβo(1-42), (2) les déficits mnésiques ainsi que lala perturbation de l’activation de ERK1/2 induits par les Aβo(1-42) sont compensés par destraitements pharmacologiques agoniste partiel et antagoniste des récepteurs α7-nAChRs, (3)le traitement par un agoniste complet des récepteurs α7-nAChRs ne permet pas de prévenir lesdéficits mnésiques. Au regard de ces résultats, le récepteur α7-nAChRs semble être essentielau développement des déficits mnésiques induits par les Aβo(1-42), et l’utilisationd’antagonistes de ces récepteurs pourraient être une cible potentielle pour le développementde nouvelles stratégies thérapeutiques. / Although Alzheimer’s disease (AD) has been considered as one of the major causesfor dementia, the mechanisms by which cognitive decline appear still remain unclear.However, amyloid-β peptides (Aβ) seem to play a central role in the appearance of memoryimpairments in the time course of the disease, inducing down-regulation of the cholinergicsystem which is associated with cognitive decline. Based on these observations, the role of α7nicotinic receptors (α7-nAChRs) which can interact with Aβ was widely studied withoutconsensus about the involvement of these receptors in memory deficits induced by Aβ.In order to improve our knowledge about the mechanisms involved in Aβ side effects,our work aims at identify the role of α7-nAChRs via behavioral and molecular approaches.Thus, we used a mice model based on injections of oligomeric assemblies of Aβo(1-42) (Aβo(1-42)) in the CA1 field of the dorsal hippocampus (dCA1) which is a brain structure stronglyinvolved in memory processes, precociously affected in the AD and with a high density of α7-nAChRs.The first part of this study was to develop and validate this animal model to studythe effects induced by Aβo(1-42) in the dCA1 by behavioral and molecular approaches. Weshow that repeated injections of Aβo(1-42) in the dCA1 induce a specific disruption of workingmemory 7 days after the last injection whereas spatial memory is spared. We also showed thatworking memory disturbance is associated with decreased activation / phosphorylation ofERK1 / 2 in the hippocampo-frontal and septo-hippocampal networks. These data allowed usto validate our experimental model to specifically study the impact of Aβo(1-42) into the dorsalhippocampus.In the second part, we focused on the role played by the α7- nAChRs receptors inmemory disturbances induced by Aβo(1-42). Our results show that (1) KOα7 mice do notexhibit working memory deficits consecutively to intra-dCA1 Aβo(1-42) injections, (2) thememory deficits and decreasing activation of ERK1/2 induced by Aβo(1-42) are offset bypharmacological treatments partial agonist and antagonist of α7-nAChRs receptors, (3)treatment with a full agonist of α7-nAChRs receptors does not prevent memory deficits .Given these results, the α7-nAChRs receptor appears to be essential to the development ofmemory deficits induced by Aβo(1-42), and the use of antagonists of these receptors might be apotential target for developing new therapeutic strategies for AD.
18

Cholinergic and calcium mapping of contrast and coherence variation of visual stimuli in the cortex of mice

Sedighi, Hossein 10 1900 (has links)
Le système cholinergique basalo-cortical joue un rôle crucial dans la régulation de la fonction visuelle grâce à son contrôle sur le cortex visuel primaire (V1). Ce système influence particulièrement la plasticité corticale, les processus d'attention et les mécanismes d'apprentissage. Les neurones cholinergiques, en particulier, jouent un rôle fondamental dans les processus d'attention et les mécanismes d'apprentissage, deux aspects clés de la cognition. Une caractéristique remarquable de ce système est sa capacité à moduler la fonction des neurones visuels. La stimulation des neurones cholinergiques, par exemple, peut entraîner une augmentation du fonctionnement de ces neurones, ce qui se traduit par une amélioration de leur sélectivité pour des tâches visuelles spécifiques. Un exemple frappant de cet effet est observé dans la sensibilité au contraste, une fonction cruciale pour la perception visuelle. Dans ce contexte, notre étude cherche à explorer et à comparer les caractéristiques distinctes de la libération d'acétylcholine (ACh) et de l'activité neuronale au sein du cortex visuel. Nous nous concentrons particulièrement sur les variations de contraste et de mouvement, deux éléments essentiels de l'environnement visuel, pour mieux comprendre comment le système cholinergique influence ces aspects de la perception visuelle. Pour ce faire, nous avons recours à l'imagerie mésoscopique, une technique avancée permettant d'observer l'activité calcique et cholinergique au niveau neuronal. L'imagerie mésoscopique de l'activité calcique et cholinergique a été réalisée chez des souris transgéniques de Thy1-gCAMP6s et des souris gACh-3.0 (senseur d’ACh transfecté par un virus adeno-associé). Dans cette étude, nous avons utilisé un réseau sinusoïdal horizontal de fréquence spatiale de 0,3 cycles par degré et de contraste variable de 30%, 50%, 75%, et 100%. La stimulation sur des moniteurs a inclus 10 répétitions de 2 secondes, avec des intervalles de 8 secondes. L’amplitude maximale des signaux calcique et cholinergiques a été calculée à l'aide d'un système d'imagerie optique modulaire et d'une caméra scientifique complémentaire métal-oxyde-semi-conducteur, CMOS. Ces mesures ont été effectuées au niveau du V1 ainsi que des zones extrastriées, y compris le cortex occipital latéral (LM), le cortex temporal intermédiaire postérieur (PM) et lateral (AL). L'examen des variationsde l'ACh et des signaux de calcium a été effectué en utilisant l'outil universal mesoscale Imaging dans le logiciel MATLAB. Des changements significatifs dépendant du contraste des signaux provenant de l'indicateur cholinergique (ACh) et calcium (Ca)ont été observés dans toutes les zones visuelles étudiées, à savoir V1, AL et PM, à l'exception de LM. Par exemple, l'amplitude moyenne pour groupe de l'expérience gACh 3.0 a été multipliée par trois lorsque l'on compare la condition de 30 % à la condition de 100 % et pour le groupe gCAMP6s plus de trois fois dans le cortex visuel primaire. En outre, la latence pour la zone V1 a été mesurée, révélant une diminution du temps de réaction à mesure que l'intensité du stimulus augmentait en fonction du contraste, statistiquement significatif pour le groupe gCAMP6s mais non statistiquement significatif pour gACh3.0. La sensibilité au mouvement a été étudiée quant à elle grâce à la projection d’un kinématogramme de points aléatoires (RDK) dont la cohérence de direction variait (de 30%, 50%, 75%, à 100%). Ni le signal calcique si celui d’ACh était sensible à la variation de la cohérence de mouvement. L'efficacité du donepezil (0.1 et 1mg/kg), qui potentialise la transmission cholinergique, était dépendante de la dose et augmentait la libération d’ACh signal mais pas le signal calcique. L’antagonisme des récepteurs muscarinique à l’ACh par la scopolamine (1mg/kg), diminuait le signal calcique. L'activité à l'état de repos présentait une corrélation modeste entre les différentes aires corticales et n’a pas été affectée par le DPZ dans le groupe gACh3.0. Cependant, dans le groupe de la gCAMP6s, les corrélations ont été renforcées après l'administration des injections. En conclusion, les résultats ont révélé une sensibilité accrue au contraste pour la signalisation du calcium et de l'ACh, où les signaux de calcium ont montré une plus grande activation par rapport aux signaux cholinergiques. Cependant les signaux n’étaient pas sensibles à la cohérence des points en mouvement. Conclusion : La libération d’ACh varie en fonction du stimulus visuel et semble avoir un impact sur l’intensité de la réponse neuronale au stimulus. Les médicaments cholinergiques et anticholinergiques, en particulier lorsqu'ils sont administrés à des doses élevées, peuvent induire des altérations de l'amplitude de l’activité corticale. / The basalo-cortical cholinergic system plays a crucial role in the regulation of visual function through its control over the precise adjustment of cortical processing. This system particularly influences cortical plasticity, attentional processes, and learning mechanisms. Cholinergic neurons, in particular, play a critical role in attention processes and learning mechanisms, which are key aspects of cognition. A notable feature of this system is its ability to modulate the function of visual neurons. For instance, stimulation of cholinergic neurons can lead to an enhanced operation of these neurons, resulting in improved selectivity for specific visual tasks. This effect is prominently observed in contrast sensitivity, a crucial function for visual perception. In this context, our study aims to explore and compare the distinct characteristics of acetylcholine (ACh) release and neuronal activity within the visual cortex. We are especially focused on variations in contrast and motion, two essential components of the visual environment, to better understand how the cholinergic system influences these aspects of visual perception. To achieve this, we employ mesoscopic imaging, an advanced technique for observing calcium and cholinergic activity at the neuronal level. Mesoscopic imaging of calcium and cholinergic activity was conducted in Thy1-gCAMP6s transgenic mice and gACh-3.0 mice (ACh sensor transduced by adeno-associated virus). In this study, we used a horizontal sinusoidal grating of 0.3 cycles per degree spatial frequency with varying contrast levels of 30%, 50%, 75%, and 100%. Stimulation on BenQ monitors included 10 repetitions of 2 seconds, with 8-second intervals. The maximum amplitude of calcium and cholinergic signals was calculated using a modular optical imaging system and a complementary metal-oxide-semiconductor, CMOS, scientific camera. These measurements were taken at V1 and extrastriate areas, including the lateral occipital cortex (LM), posterior intermediate temporal cortex (PM), and lateral (AL). Examination of ACh and calcium signal variations was performed using the universal mesoscale Imaging tool in MATLAB software. Significant contrast-dependent changes in cholinergic (ACh) and calcium (Ca) indicator signals were observed in all visual areas studied, namely V1, AL, and PM, except for LM. For instance, the mean amplitude for the gACh 3.0 experimental group was tripled when comparing the 30% to the 100% condition, and for the gcamp6s group, it was more than tripled in the primary visual cortex. Moreover, the latency for the V1 area was measured, revealing a decrease in reaction time as stimulus intensity increased according to contrast statistically significant for gCAMP6s group but not significant for gACh3.0. Motion sensitivity was studied by projecting a random dot kinematogram with varying directional coherence (from 30%, 50%, 75%, to 100%). Neither the CaS nor the ACh signal was sensitive to variation in motion coherence. The efficacy of DPZ (0.1 and 1mg/kg), which potentiates cholinergic transmission, was dose-dependent and increased ACh release but not calcium signal. Muscarinic ACh receptor antagonism by scopolamine (1mg/kg) decreased calcium signaling. Resting-state activity correlated modestly between the different cortical areas and was not affected by DPZ in the gACh3.0 group. The resting state activity exhibited a modest correlation and was infrequently impacted by treatments in the gACh3.0 group. However, in the gCAMP6s group, both positive and negative correlations were enhanced subsequent to the administration of injections. As a conclusion, the research findings revealed a strong contrast sensitivity of both calcium and ACh signalling, wherein calcium signals exhibited greater activation compared to ACh signals. The influence of ACh on visual processing is thus shown at a very low cognitive level. The signals were not changed by the coherence of moving dots. Cholinergic and anticholinergic drugs, particularly when administered in high dosages, influence the visual processing.
19

Système cholinergique et modulation de la transmission nociceptive spinale / Cholinergic system and spinal nociceptive transmission modulation

Mesnage, Bruce 04 November 2013 (has links)
L’acétylcholine (ACh) endogène de la corne dorsale de la moelle épinière (CDME) exerce une analgésie puissante utilisée en clinique, dont la source et les mécanismes demeurent inconnus. Elle siège probablement au niveau d’un plexus de fibres cholinergiques de la CDME d’origine non-élucidée. Dans ce contexte, nous avons pu établir que ce plexus est principalement issu d’interneurones cholinergiques spinaux caractérisés dans ces travaux, qui seraient donc le substrat probable de l’analgésie décrite. Décrits comme concourant aux effets aigus et analgésiques de la morphine, nous avons, par ailleurs, pu observer que les récepteurs de l’ACh participaient également aux effets chroniques et pro-algésique de la morphine, notamment au niveau de la CDME. Ceci place donc l’ACh comme un effecteur ou intermédiaire de la morphine.Nos travaux suggèrent ainsi que le système cholinergique spinal pourrait constituer une cible thérapeutique alternative pour de nouveaux traitements de la douleur / In the spinal cord dorsal horn (SCDH), endogenous acetylcholine (ACh) acts as a powerful analgesia, of clinical use. Though its source and mechanisms remain unravelled, this analgesia probably lies in a plexus of cholinergic fibers (PCF) located in the SCDH and of undetermined origin. In this context, we established that the PCF mainly originates from a spinal population of cholinergic interneurons, fully characterized in this work. These are, thus, the likely substrate of the spinal cholinergic analgesia.Besides, ACh receptors (AChR) partly mediate the analgesic acute effects of morphine. In this work, we also observed that a chronically-administered AChR agonist reproduces as well the pro-algesic effects of morphine in the same conditions. Thus, ACh appears as a possible intermediary or a final effecter of the morphine pain pathways.Our data suggest that the cholinergic system could become a new putative therapeutic target in pain management and treatment.
20

Cholinergic enhancement of perceptual learning : behavioral, physiological, and neuro-pharmacological study in the rat primary visual cortex

Kang, Jun-Il 06 1900 (has links)
Les cortices sensoriels sont des régions cérébrales essentielles pour la perception. En particulier, le cortex visuel traite l’information visuelle en provenance de la rétine qui transite par le thalamus. Les neurones sont les unités fonctionnelles qui transforment l'information sensorielle en signaux électriques, la transfèrent vers le cortex et l'intègrent. Les neurones du cortex visuel sont spécialisés et analysent différents aspects des stimuli visuels. La force des connections entre les neurones peut être modulée par la persistance de l'activité pré-synaptique et induit une augmentation ou une diminution du signal post-synaptique à long terme. Ces modifications de la connectivité synaptique peuvent induire la réorganisation de la carte corticale, c’est à dire la représentation de ce stimulus et la puissance de son traitement cortical. Cette réorganisation est connue sous le nom de plasticité corticale. Elle est particulièrement active durant la période de développement, mais elle s’observe aussi chez l’adulte, par exemple durant l’apprentissage. Le neurotransmetteur acétylcholine (ACh) est impliqué dans de nombreuses fonctions cognitives telles que l’apprentissage ou l’attention et il est important pour la plasticité corticale. En particulier, les récepteurs nicotiniques et muscariniques du sous-type M1 et M2 sont les récepteurs cholinergiques impliqués dans l’induction de la plasticité corticale. L’objectif principal de la présente thèse est de déterminer les mécanismes de plasticité corticale induits par la stimulation du système cholinergique au niveau du télencéphale basal et de définir les effets sur l’amélioration de la perception sensorielle. Afin d’induire la plasticité corticale, j’ai jumelé des stimulations visuelles à des injections intracorticales d’agoniste cholinergique (carbachol) ou à une stimulation du télencéphale basal (neurones cholinergiques qui innervent le cortex visuel primaire). J'ai analysé les potentiels évoqués visuels (PEVs) dans le cortex visuel primaire des rats pendant 4 à 8 heures après le couplage. Afin de préciser l’action de l’ACh sur l’activité des PEVs dans V1, j’ai injecté individuellement l’antagoniste des récepteurs muscariniques, nicotiniques, α7 ou NMDA avant l’infusion de carbachol. La stimulation du système cholinergique jumelée avec une stimulation visuelle augmente l’amplitude des PEVs durant plus de 8h. Le blocage des récepteurs muscarinique, nicotinique et NMDA abolit complètement cette amélioration, tandis que l’inhibition des récepteurs α7 a induit une augmentation instantanée des PEVs. Ces résultats suggèrent que l'ACh facilite à long terme la réponse aux stimuli visuels et que cette facilitation implique les récepteurs nicotiniques, muscariniques et une interaction avec les récepteur NMDA dans le cortex visuel. Ces mécanismes sont semblables à la potentiation à long-terme, évènement physiologique lié à l’apprentissage. L’étape suivante était d’évaluer si l’effet de l’amplification cholinergique de l’entrée de l’information visuelle résultait non seulement en une modification de l’activité corticale mais aussi de la perception visuelle. J’ai donc mesuré l’amélioration de l’acuité visuelle de rats adultes éveillés exposés durant 10 minutes par jour pendant deux semaines à un stimulus visuel de type «réseau sinusoïdal» couplé à une stimulation électrique du télencéphale basal. L’acuité visuelle a été mesurée avant et après le couplage des stimulations visuelle et cholinergique à l’aide d’une tâche de discrimination visuelle. L’acuité visuelle du rat pour le stimulus d’entrainement a été augmentée après la période d’entrainement. L’augmentation de l’acuité visuelle n’a pas été observée lorsque la stimulation visuelle seule ou celle du télencéphale basal seul, ni lorsque les fibres cholinergiques ont été lésées avant la stimulation visuelle. Une augmentation à long terme de la réactivité corticale du cortex visuel primaire des neurones pyramidaux et des interneurones GABAergiques a été montrée par l’immunoréactivité au c-Fos. Ainsi, lorsque couplé à un entrainement visuel, le système cholinergique améliore les performances visuelles pour l’orientation et ce probablement par l’optimisation du processus d’attention et de plasticité corticale dans l’aire V1. Afin d’étudier les mécanismes pharmacologiques impliqués dans l’amélioration de la perception visuelle, j’ai comparé les PEVs avant et après le couplage de la stimulation visuelle/cholinergique en présence d’agonistes/antagonistes sélectifs. Les injections intracorticales des différents agents pharmacologiques pendant le couplage ont montré que les récepteurs nicotiniques et M1 muscariniques amplifient la réponse corticale tandis que les récepteurs M2 muscariniques inhibent les neurones GABAergiques induisant un effet excitateur. L’infusion d’antagoniste du GABA corrobore l’hypothèse que le système inhibiteur est essentiel pour induire la plasticité corticale. Ces résultats démontrent que l’entrainement visuel jumelé avec la stimulation cholinergique améliore la plasticité corticale et qu’elle est contrôlée par les récepteurs nicotinique et muscariniques M1 et M2. Mes résultats suggèrent que le système cholinergique est un système neuromodulateur qui peut améliorer la perception sensorielle lors d’un apprentissage perceptuel. Les mécanismes d’amélioration perceptuelle induits par l’acétylcholine sont liés aux processus d’attention, de potentialisation à long-terme et de modulation de la balance d’influx excitateur/inhibiteur. En particulier, le couplage de l’activité cholinergique avec une stimulation visuelle augmente le ratio de signal / bruit et ainsi la détection de cibles. L’augmentation de la concentration cholinergique corticale potentialise l’afférence thalamocorticale, ce qui facilite le traitement d’un nouveau stimulus et diminue la signalisation cortico-corticale minimisant ainsi la modulation latérale. Ceci est contrôlé par différents sous-types de récepteurs cholinergiques situés sur les neurones GABAergiques ou glutamatergiques des différentes couches corticales. La présente thèse montre qu’une stimulation électrique dans le télencéphale basal a un effet similaire à l’infusion d’agoniste cholinergique et qu’un couplage de stimulations visuelle et cholinergique induit la plasticité corticale. Ce jumelage répété de stimulations visuelle/cholinergique augmente la capacité de discrimination visuelle et améliore la perception. Cette amélioration est corrélée à une amplification de l’activité neuronale démontrée par immunocytochimie du c-Fos. L’immunocytochimie montre aussi une différence entre l’activité des neurones glutamatergiques et GABAergiques dans les différentes couches corticales. L’injection pharmacologique pendant la stimulation visuelle/cholinergique suggère que les récepteurs nicotiniques, muscariniques M1 peuvent amplifier la réponse excitatrice tandis que les récepteurs M2 contrôlent l’activation GABAergique. Ainsi, le système cholinergique activé au cours du processus visuel induit des mécanismes de plasticité corticale et peut ainsi améliorer la capacité perceptive. De meilleures connaissances sur ces actions ouvrent la possibilité d’accélérer la restauration des fonctions visuelles lors d’un déficit ou d’amplifier la fonction cognitive. / Sensory cortex is an essential area where sensory perception occurs. Especially visual cortex processes visual information transmitted from the retina through the thalamus. By different neuronal activation the information is segregated and sent to diverse visual area for interpretation. Neurons are the basic unit that transform sensory information into electrophysiological signal, transfer to the cortex and integrate it. Connection between neurons can be modulated depending on the persistent presynaptic activity inducing either a long-term increase or decrease of the post-synaptic activity. Modification in synaptic strength can affect large area and induce reorganization of cortical map (i.e. cortical plasticity) which changes the representation of the visual stimulus and its weight in visual processing. Cortical plasticity can occur during juvenile while forming developmental connection or in adult while acquiring novel information (i.e. learning). The neurotransmitter ACh is involved in many cognitive functions, such as learning or attention and it was demonstrated that lesioning or blocking cholinergic system diminishes cortical plasticity. It was shown that nicotinic, M1 subtype and M2 subtype muscarinic receptors are the major cholinergic receptors abundant in the cortex and implicated during cortical plasticity induction. In a first part, I analyzed visual evoked potentials (VEPs) in V1 of rats during a 4-8h period after coupling visual stimulation to an intracortical injection of ACh agonist carbachol or stimulation of basal forebrain. To clarify the action of ACh on VEP activity in V1, we individually injected muscarinic, nicotinic, α7, and NMDA receptor antagonists just before carbachol infusion. Stimulation of the cholinergic system paired with visual stimulation significantly increased VEP amplitude for long-term. Pre-inhibition of muscarinic, nicotinic and NMDA receptor completely abolished this long-term enhancement, while α7 inhibition induced an instant increase of VEP amplitude. This suggests a role of ACh in facilitating visual stimuli responsiveness which involves nicotinic and muscarinic receptors with an interaction of NMDA transmission in the visual cortex. These mechanisms were similar to long-term potentiation, a neurobiological mechanism of learning. In a second step, I evaluate whether cholinergic modulation of visual neurons results in cortical activity and visual perception changes. Awake adult rats were exposed repetitively for two weeks to an orientation-specific grating with coupling visual stimulation to an electrical stimulation of the basal forebrain. The visual acuity, as measured using a visual water maze before and after coupling visual/cholinergic stimulation was increased. The increase in visual acuity was not observed when visual or basal forebrain stimulation was performed separately nor when cholinergic fibers were selectively lesioned prior to the visual stimulation. There was a long-lasting increase in cortical reactivity of the primary visual cortex shown by c-Fos immunoreactivity of both pyramidal and GABAergic interneuron. These findings demonstrate that when coupled with visual training, the cholinergic system improves visual performance for the trained orientation probably through enhancement of attentional processes and cortical plasticity in V1 related to the ratio of excitatory/inhibitory inputs. Finally, I also investigated the different pharmacological mechanisms involved in the visual enhancement. Pre- and post-pairing visual/cholinergic stimulation VEP were compared with selective administered agonist/antagonist during the pairing. Awaken adult rats were exposed during 10 minutes per day for 1 week to an orientation specific grating with an electrical stimulation of the basal forebrain. Intracortical injection of different pharmacological agents during pairing demonstrated that nicotinic and M1 muscarinic receptors are used to amplify cortical response while M2 muscarinic receptor suppresses GABAergic neurons to disinhibit excitatory neurons. Infusion of GABAergic antagonist supported that inhibitory system is crucial to induce cortical plasticity. These findings demonstrate that visual training coupled with the cholinergic stimulation enhances the cortical plasticity mediated by nicotinic, M1 and M2 muscarinic receptors, which the latter induces a disinhibition by suppressing GABAergic neuron. The cholinergic system is a potent neuromodulatory system. Boosting this system during perceptual learning robustly enhances the sensory perception. Especially, pairing a cholinergic activation with a visual stimulation increases the signal-to-noise ratio, cue detection ability in the primary visual cortex. This cholinergic enhancement increases the strength of thalamocortical afferent to facilitate the treatment of a novel stimulus while decreasing the cortico-cortical signaling to minimize recurrent or top-down modulation. This is mediated by different cholinergic receptor subtypes located in both glutamatergic and GABAergic neurons of the different cortical layers. The mechanisms of cholinergic enhancement are closely linked to attentional processes, long-term potentiation and modulation of the excitatory/inhibitory balance. The present thesis shows that electrical stimulation of the basal forebrain has similar effect with cholinergic agonist release and pairing visual/cholinergic stimulation induces cortical plasticity. Repetitive pairing of visual/cholinergic increases visual discrimination capacity and enhances perceptual ability. This enhancement is followed by an augmentation of neuronal activity demonstrated by c-Fos immunohistochemistry. Immunoreactivity also shows difference in glutamatergic and GABAergic neurons activities between layers. Pharmacological injection during visual/cholinergic pairing suggests that nicotinic and M1 muscarinic receptor can amplify excitatory response while M2 receptor controls GABAergic activation. Altogether cholinergic system activated during visual process induces cortical plasticity and can enhance perceptual ability. Further understanding of this training has the potential to accelerate visual recovery or boost cognitive function.

Page generated in 0.0487 seconds