• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cyclization of indoles and enol ethers with alkynes catalyzed by platinum and gold

Ferrer Llabrés, Catalina 24 January 2008 (has links)
El indol es uno de los heterociclos aromáticos presente en mayor número de productos naturales con propiedades farmacológicas. Aunque se han desarrollado diferentes métodos para sintetizar derivados de indoles, la búsqueda de metodologías para obtener nuevos compuestos es todavía un tema de interés en química orgánica. Un método interesante para sintetizar derivados de indol es la reacción de hidroarilación de alquinos.Hemos encontrado que la hidroarilación intramolecular de de alquinos catalizada por nuevos complejos de Au(I) permite la síntesis de derivados de indol con anillos de siete miembros fusionados en una reacción de tipo 7-exo-dig. Cuando esta misma reacción se lleva a cabo con AuCl3, en lugar de anillos de siete se forman anillos de ocho miembros en un proceso poco frecuente de tipo 8-endo-dig. En algunas ocasiones, también hemos observado la formación de alenos o tetraciclos como resultado de una reacción de fragmentación. Basándonos en resultados experimentales, hemos propuesto un mecanismo para la formación de este tipo de sustratos que consiste en la formación de un enlace C-C en la posición tres del indol, seguido de una migración 1,2, en una reacción de tipo Friedel-Craft. Hemos desarrollado la versión intermolecular de la reacción entre indoles y alquinos obteniendo una amplia diversidad de productos en función de la sustitución en el indol y el alquino.En el segundo capítulo de la Tesis esta metodología sintética ha sido aplicada al estudio de la síntesis total de los productos naturales lundurinas A-D, cuya estructura posee una indoloazocina. Mediante la ciclación catalizada por AuCl3 del sustrato adecuado hemos conseguido sintetizar la estructura tetracíclica característica de esta familia de compuestos.Otro tema de mi trabajo de Tesis Doctoral ha sido el estudio de la reacción de éteres de enol con alquinos catalizada por platino y por oro. Cuando uno de los átomos del puente entre el alquino y el éter de enol es un oxígeno se obtienen 3-oxabiciclo[4.1.0]hept-4-enos mediante la ciclopropanación intramolecular de éteres de enol por alquinos catalizada por Pt(II) u Au(I) De acuerdo con el esquema general del mecanismo de la ciclación de 1,6-eninos catalizada por Pt(II), Pd(II) y Au(I), los ciclopropil carbenos metálicos formados en la ciclación de tipo 6-endo-dig pueden evolucionar para dar anillos de siete miembros. Este tipo de reactividad ha sido observada por primera vez en la reacción intramolecular que hemos desarrollado de éteres de enol con alquinos catalizada por complejos de oro y platino electrófilos. En algunos ejemplos de las reacciones catalizadas por Au(I) se han obtenido acetales fruto de un complejo reordenamiento de la molécula que también transcurre a través de un intermedio con un anillo de siete miembros.Finalmente, hemos hecho una nueva propuesta para el mecanismo de la ciclación de alquinil iminas para dar pirroles catalizada por Cu(I), corrigiendo el mecanismo originalmente propuesto por Gevorgyan. De acuerdo con la nueva propuesta, hemos hecho un estudio de la síntesis de pirroles sustituidos en posición tres. / Indole is a structure present in a large number of alkaloids and natural products with important pharmaceutically properties. Although a variety of methods have been developed to sythesize derivatives of this heterocycle and to modify its substitution pattern, new methods that provide indole derivatives are still of high interest in organic chemistry. An interesting way to obtain indole derivatives could be the catalytic hydroarylation of alkynes, although this method has not been widespread developed, until now.We have found that the intramolecular hydroarylation of alkynes using recently developed cationic gold(I) complexes allows the synthesis of seven membered ring indole derivatives by a 7-exo-dig cyclization process. Interestingly, AuCl3 promotes the formation of eight membered rings by an unusual 8-endo-dig cyclization. In some cases, we have also observed the formation of allenes or tetracyclic derivatives with gold(I), as a result of a fragmentation reaction. Based on experimental results, a mechanism has been proposed to explain the formation of these compounds. This mechanism involves a C-C bond formation at C-3 followed by a 1,2-migration in a Friedel-Craft type reaction.We have also developed the intermolecular reaction between indoles and alkynes catalyzed by gold, giving rise to a wide range of different products.In the second chapter of this Thesis the methodology developed for the cyclization of indoles with alkynes has been applied to the study of the total synthesis of the family of natural products lundurines A-D. This products contain an indoloazocine unit and by the cyclization of the appropiate substrate the tetracyclic core of the lundurines has been synthetized.Another topic of my Doctoral Thesis is the study of the reaction of enol ethers with alkynes. A methodology for the synthesis of 3-oxa-biciclo[4.1.0]hept-4-enes catalyzed by Pt(II) and Au(I) has been developed The general mechanism of Pt(II)-, Pd(II)-, and Au(I)-catalyzed reactions between alkynes and alkenes has been demonstrated in the context of 1,6-enyne cyclization. Accordingly cyclopropyl metal carbenes formed in the 6-endo-dig cyclization may evolve to form seven-membered ring intermediates. This has been achieved for the first time by using highly electrophilic platinum(II) and gold(I) complexes. Gold(I) also triggers a remarkable rearrangement of certain enynes leading to complex cyclic systems. This reaction also proceeds via a seven-membered ring intermediate.Finally, the mechanism for the cyclization of alkynyl imines catalyzed by Cu(I) to give pyrroles originally proposed by Gevorgyan has been corrected. Based on this new mechanistic proposal, we have carried out a study for the synthesis of 3-substitud pyrroles.
2

Stereoselective synthesis of 2-deoxoligosaccharides

Boutureira Martin, Omar 16 July 2007 (has links)
Stereoselective Synthesis of 2-DeoxyoliogosaccharidesAutor: Omar Boutureira MartínLa tesi s'emmarca dins el camp de la síntesis de carbohidrats i glicoconjugats i mes concretament sobre la síntesi de 2-desoxi-glicòsids i oligosacàrids, que son unitats estructurals presents en substàncies biològicament actives i/o productes naturals com antitumorals, antibiòtics, agents antiparasitaris, cardiotònics...i a més a més són difícils d'obtenir a partir de carbohidrats naturals. D'aquesta forma en aquesta tesi s'aborda la síntesis de 2-desoxi-2-iodo-1-tiopiranósids com a nous dadors de glicosil i la seva aplicació en la síntesis estereoselectiva d'oligosacàrids i glicòsids. Aquest dadors de glicosil es caracteritzen per la presència d'un grup fenilsulfanil com a grup sortint en la posició anomèrica (C1) i un grup iode en el C2 que actua com element de control en la reacció de glicosilació. La memòria s'ha organitzat en una introducció general un capítol d'objectius, i quatre capítols on s'exposen i discuteixen els resultats obtinguts amb les seves corresponents conclusions.La introducció (Capítol 1) tracta sobre els mètodes de síntesi de 2-desoxiglicòsids de configuracions  i ,. D'aquesta forma es fa una revisió dels mètodes desenvolupats fins avui per la síntesis d'aquest glicòsids. Lligat amb aquests mètodes anteriors, en els objectius (Capítol 2) es posa de manifest la necessitat d'arribar a un nou mètode de síntesis de 2-desoxicarbohidrats que permeti assolir totes les configuracions de piranòsids possibles. En el Tercer capítol es desenvolupa el nou mètode d'obtenció de 2-desoxi-2 iodo-1-tioglicòsids que després es faran servir com a dadors de glicosil. A partir de pentoses de totes les configuracions i diferentment protegides es van estudiar diferent mètodes d'olefinació per tal d'obtenir polihidroxihexenilsulfurs. El mètode més eficaç en termes de rendiment i estereoselectivitat fou la olefinació amb òxid de fosfina (reacció de Wittig-Horner-WH). Aquests alquenols es van ciclar amb electròfils de iode, conduint de forma regioselectiva als 2-desoxi-2-iodo-1 tiopiranòsids. Aquest compostos es van utilitzar com dadors de glicosil i es van fer reaccionar amb colesterol com a model d'aglicona de diferents compostos bioactius i amb un glucòsid com a model de síntesi d'oligosacàrid.Donat que la reacció de ciclació i la de glicolació eren activades per el mateix tipus de reactiu, es va pensar en realitzar la síntesi dels 2-desoxi-2-iode-glicòsids de forma consecutiva sense aïllar el tioglicòsid intermedi. Aquest procediment va resultar un èxit conduint al producte final con rendiments mol millors amb estereoselectivitats similars. En el Quart capítol se estudia las mateixes reaccions que abans però emprant seleni en lloc de sofre i/o iode. Així, en primer lloc s'estudia la reacció de ciclació dels alquenols obtinguts en Capítol 3, però induïda per reactius electròfils de seleni. Se estudia com l'estructura del substrat afecta a la reacció. S'observa que en funció del substrat es formen principalment glicals o inclús selenoglicals. Solament s'obtenen els corresponents 2-desoxi-2-fenilselenenil-tioglicòsids quan existeixen grups protegits amb grups isopropilidé. En aquestos casos però els productes de ciclació amb seleni à la posició 2 son també excel.lents glicosil dadors, i el control de l'estereoselectivitat de la reacció es similar a quan s'utilitza iode.En la segona part d'aquest Capítol s'estudien mètodes de síntesi de selenoalquens, concluint que la reacció es particularment difícil en el cas dels sucres i que també la reacció de W-H es la més apropiada. En Capítol 5, aborda el estudi d'un nou mètode de síntesi de sulfanilalquens derivats de carbohidrats mitjançant la reacció de metatesi creuada amb catalitzadors de ruteni amb lligands carbè. La reacció es conegut que presenta elevada dificultat quan s'utilitzen alquens rics en densitat de càrrega com es el cas dels vinilèters o vinilsulfurs, però s'han aconseguit rendiments moderats dels compostos objectiu utilitzant microonas com font de calor i el ús de catalitzadors comercials. En el Capítol 6 s'exposa la síntesi de glicals a partir del 1-tio-2-desoxi-2 iodo-piranosids. El glicals són compostos molt versàtils i útils en la síntesis de carbohidrats i amb el procediment desenvolupat en aquest capítol s'arribà a obtenir glicals de configuracions difícils d'obtenir per altres mètodes, com el D-allal i el D-gulal. A més, en una segona part del capítol tercer, aplicant un procediment de glicosilació estàndard per a com el de Gin ("dehydrative glycosylation") s'obtenen a partir de 2 iodolactols diversos compostos com a 2 iodoglicals, glicals o 1,1'-disacàrids. En conjunt i com resultat del treball de recerca desenvolupat s'han posat a punt un nou mètode de síntesi de 2-desoxiglicòsids i 2-desoxi-oligosacàrids, compatible amb totes les configuracions dels sucres i que consta de tres reaccions olefinació de pentoses, ciclació intramolecular induïda per electròfils i glicosilació. Les dues ultimes etapes poden ser realitzades en un sol matràs de forma consecutiva. El estudi d'aquest mètode ha suposat el posar a punt reaccions d'obtenció de sulfanil i selenenil alquens, els primer per dos procediments diferents (W-H i metatesi creuada), ciclació intramolecular regio i estereoselectiva induïda per electròfils de iode i seleni, y la glicosilació a partir de nous dadors de glicosil (2-deoxi-2-iodo-tioglicòsids i 2-desoxi-2-fenilselenenil-tioglicòsids). Finalment, El sulfanil alquens preparats han estat utilitzats per posar a punt un nou mètode de síntesi de glicals que permet acce3dir a glicals de totes les configuracions. Els glicals per altra banda son intermedis de síntesi estratègics in síntesi orgànica. Així doncs es pot considerar que els objectius científics plantejats per aquesta Tesi ha sigut àmpliament assolits. / Stereoselective Synthesis of 2-DeoxyoliogosaccharidesAutor: Omar Boutureira Martín The research described in this thesis aims to investigate a new method for the stereoselective synthesis of 2-deoxyglycosides and oligosaccharides based on a new access to 2-deoxy-2-iodo- and 2-deoxy-2-phenylselenenyl glycosyl donors that would not be limited by the availability of pyranoid glycals and by the stereoselective addition of electrophiles. Chapter 3 describes our investigation into the application of the general procedure for the stereoselective synthesis of 2-deoxy-2 iodo-hexopyranosyl glycosides from furanoses. The procedure involves three reactions: Wittig-Horner olefination to give alkenyl sulfanyl derivatives, electrophilic iodine-induced cyclization to give phenyl 2-deoxy-2-iodo-1-thiopyranosides, a new type of glycosyl donor, and glycosylation. The olefination reaction afforded alkenyl sulfanyl derivatives in good to excellent yields, except in cases where the conformational freedom is constrained by cyclic protecting groups such as 3,4-O-isopropylidene. The cyclization reaction proceeds with complete regio- and stereoselectivity. The reaction proceeds exclusively as 6-endo cyclization to give phenyl 1-thiopyranoside derivatives. The stereochemistry of the iodine at C-2 is always cis to the neighboring alkoxy group, except for lyxo derivatives which lack cyclic protecting groups. This is a key point in the overall process because the iodine controls the stereoselectivity of the glycosylation reaction. The yield of the cyclization depends on the configuration of the starting material; it is very good for substrates with a ribo or xylo configuration, but more modest for those with an arabino or lyxo configuration. The glycosylation reaction proceeded with good yields and good to excellent stereoselectivities. The glycosidic bond created in the major isomers was always trans to the iodine at C-2. Although phenyl 2-deoxy-2-iodo-1-thioglycosyl donors of all configurations can be accessed using the proposed procedure, it is particularly effective in providing 2-deoxy-2 iodo-β-D-gulo- and -β-D-allo-glycosides. These glycosides are precursors of 2-deoxyglycosides of ribo and xylo configuration, which are difficult to obtain by the classical methodology starting from glycals. Since 2-deoxy-2-iodo-1-thioglycosides are activated in conditions similar to those used to induce the cyclization, 2-deoxy-2-iodopyranosides were synthesized from sulfanyl alkenes using a "one pot" consecutive cyclization and glycosylation process. The "one pot" procedure has the advantage that it starts directly from the very stable acyclic alkenyl sulfide precursors and does not require isolation of the glycosyl donors. The overall strategy is fairly straightforward and operationally simple. Compared with the stepwise procedure, the "one pot" process gave significantly improved yields with similar or slightly lower selectivities. Furthermore, the "one pot" procedure was successfully applied to the synthesis of 2-deoxy- and 2,6-dideoxyglycosides. Chapter 4 describes our investigation into the application of the general procedure for the stereoselective synthesis of 2-deoxy-2 phenylselenenyl-hexopyranosyl glycosides from furanoses. We developed 2-deoxy-2-phenylselenenyl-1-thioglycosides as a new class of glycosyl donors that provide access to 2-deoxyglycosides. The cyclization reaction proceeds with complete regio- and stereoselectivity enhanced by employing 3,4-O-isopropylidene as a cyclic bifunctional protecting group. We have also demonstrated that the glycosylation of 2-deoxy-2-phenylselenenyl-1-thioglycosides is highly substrate dependent. Although glycosylation products of all configurations can be accessed by employing the present methodology, it is particularly effective in providing 2-deoxy-2-phenylselenenyl--D-gulo- and --D-allo-glycosides. In particular, regardless of the nature of the solvent employed, the high β-selectivity observed in gulo (α/β ratio 1:14) and more modest in allo (α/β ratio 1:4) series is comparable to that previously observed for analogous glycosylation reactions of 2-deoxy-2-iodo-1-thio-D-gulo- (α/β ratio 1:16) and -D-allo-glycosyl donors (α/β ratio 1:6). Furthermore, the use of phenylselenenyl group at C-2 gave us some insight into the likely pathway of glycosylation reactions by using 2-deoxy-2-phenylselenenyl-1-thioglycosyl donors. Since the stereoselectivity observed is similar to that obtained using 2-deoxy-2-iodo-1-thioglycosides it can be concluded that this explanation is general for the different glycosylations assisted by chalcogens and halogens at C-2. Since 2-deoxy-2-iodo- and 2-deoxy-2-phenylselenenyl-1-thioglycosides have been evaluated as a new class of glycosyl donors, we became interested in the preparation of other useful glycosyl donors such as 2-deoxy-2-iodo-1-selenoglycosides, and exploit their higher reactivity in developing milder and orthogonal stereoselective glycosylation protocols by using this methodology. Thus, carbohydrate-based vinyl selenides of arabino, ribo, and 2-deoxy-ribo configurations were prepared by Wittig-type reactions of various protected furanoses. Moderate yields were always obtained due to nature and reactivity of both carbohydrate lactols and selenium-based olefinating reagents under the conditions tested. The reaction with electrophiles proved to be challenging and no cyclization products were obtained. The preparation of vinyl selenides proved to be much more difficult than the related vinyl sulfides, which can be prepared in good yields using Wittig-Horner reaction. Chapter 5 reports olefin cross metathesis reaction between carbohydrate-derived hydroxy alkenes and electron-rich olefinic partners with commercially available ruthenium-based catalysts. Microwave irradiation effectively accelerates the cross metathesis reaction of electron-rich olefins although some of the conversions remained low. Cross metathesis can only be achieved with hydroxy alkenes derived from 2-deoxysugars. In contrast, the hydroxy alkenes bearing an allylic alkoxy group neither isomerizes nor couples under similar conditions. Chapter 6 reports a new method for accessing pyranoid glycals of different configurations by a short route that uses readily available starting materials, and conventional transformations. Our method is particularly valuable for the synthesis of non-readily accessible glycals such as D-allal and D-gulal that are valuable products to prepare some oligosaccharide molecules with biologically interesting properties. A series of 2-deoxy-2-iodopyranoses were evaluated as precursors that provide access to pyranoid glycals and 2-iodoglycals from sulfanyl alkenes. This synthetic route involves consecutive cyclization and hydrolysis reactions followed by treatment of the resulting lactol under Gins' dehydrative glycosylation conditions. Despite the fact that this procedure has proved to be an efficient and general glycosylation method, its application to 2-deoxy-2-iodopyranoses did not afford the expected products. Although the observed product distribution (glycals, 2-iodoglycals, and 1,1'-disaccharides) revealed that this reaction is very sensitive to the configuration of the 2-deoxy-2-iodopyranose, 2-iodo pyranoid glycals can be almost exclusively obtained in good yields by employing 3,4-O-isopropylidene as a cyclic bifunctional protecting group.

Page generated in 0.0618 seconds