1 |
Geodesic motion in the Reissner-Nordström space-time / Movimento geodésico no espaço-tempo de Reissner-NordstömCapobianco, Rogério Augusto 04 July 2019 (has links)
The motion of neutral test particles, both massive and massless, in the space time of a charged source described by the Reissner-Nordström solution is studied. This solution is characterized by two parameters, mass and charge, which defines the horizons of the source. When the mass is larger than the charge, the solution describes a black hole, with two distinct horizons. When the mass and charge are equal there is an extremal black hole, and both horizons merge to one. Finally, when the charge is larger than the mass there is a naked singularity, with no horizon. The structure and properties of these different type of solution are presented and discussed. A general solution of the equations of motion is presented in function of the Weierstrass elliptic function ℘. In addition, the possible orbits for test particles are discussed, and the conditions for existence of closed, circular or escape orbits are presented. The classifications is made based on the particles energy, and the mass and charge of the source. We find that all mentioned orbits are allowed for the three different type of solutions. In particular, for extremal black holes and naked singularities, we find stable circular orbits located outside the event horizon and hence being visible for an external observer. / O movimento de partículas teste neutras, ambas massivas e sem massa, no espaço-tempo de uma fonte carregada descrita pela solução de Reissner-Nordström é estudada. Essa solução é caracterizada por dois parâmetros, massa e carga, que definem os horizontes da fonte. Quando a massa é maior que a carga tal solução descreve um buraco negro com dois horizontes distintos. Quando a massa e a carga são iguais há um buraco negro extremo, e ambos os horizontes se unem em um. Finalmente, quando a carga é maior que a massa, há uma singularidade nua, sem horizontes. A estrutura e as propriedades dessas diferentes soluções são apresentadas e discutidas. Uma solução geral da equação de movimento é apresentada em termos da função elíptica de Weierstrass, ℘. Além do mais as possiveis órbitas para uma partícula teste são discutidas, e as condições para existência de órbitas fechadas, circulares e de escape são apresentadas. A classificação é feita a partir da energia da partícula, e da massa e carga da fonte. Encontramos que todas as orbitas mencionadas são permitidas nos três diferentes tipos de soluções. Em partícular, para buracos negros extremos e singularidades nuas, encontramos órbitas circulares estáveis localizadas fora do horizonte de eventos e, consequentemente, sendo visível para observadores externos.
|
2 |
Soluções exatas de equações de Einstein para buracos negros e anéis de matéria / Exact solutions of Einstein's equations for black holes and matter ringsCastro, Gian Machado de 13 August 2018 (has links)
Orientadores: Patricio A. Letelier Sotomayor e Marcelo Moraes Guzzo / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-13T19:55:09Z (GMT). No. of bitstreams: 1
Castro_GianMachadode_D.pdf: 3217878 bytes, checksum: 48c026fc06d4c9e5db03014506ffc609 (MD5)
Previous issue date: 2009 / Resumo: Nesta tese, estudamos o problema de um anel delgado de matéria de densidade constante com um buraco negro de Kerr em seu centro. Nosso objetivo foi resolver as equações de Einstein no vácuo com simetria axial para esse sistema gravitacional. Para fazer a sobreposição não-linear do anel com o buraco negro (BN), utilizamos o método de Belinsky e Zakharov (MBZ). Este método necessita de uma solução conhecida (solução semente) para gerar uma nova solução. Tomamos a aproximação da solução do anel em multipolos como solução semente. Como resultado, obtivemos a solução de um anel com o BN central.
A expansão do anel em multipolos exige o truncamento da série. Esta aproximação introduz um erro em nossa solução. Realizamos o estudo do mesmo devido ao truncamento da série. Também estudamos a estabilidade de órbitas circulares equatoriais de partículas movendo-se ao redor do sistema anel-BN quanto a perturbações epicíclicas e verticais. Analisamos essas perturbações para os modelos de gravitação relativística e newtoniana. Como resultado, encon- tramos o efeito inesperado da duplicação das órbitas circulares de flotons para alguns valores de parâmetros relacionados com o anel e o BN, bem como zonas de estabilidade na região interna do anel. / Abstract: In this thesis, we will study the problem of a thin ring of matter of constant density with a central Kerr black hole. The aim of this work is to solve the Einstein equations in the vacuum with axial symmetry for that gravitational system. To do the nonlinear superposition of the ring with the black hole (BH), we used the Belinsky and Zakharov method (BZM). This method needs a known solution (called seed solution) to generate a new one. We took the Newtonian ring potential approximated by a multipolar expansion as seed solution. As result, we obtained the solution of a ring with a central BH.
The ring multipolar expansion demands the truncation of the series. This approach introduces an error in our solution. Estimations of errors due to the truncation of the multipolar expansions are performed. We also studied the stability of equatorial circular orbits of particles moving around the system ring plus BH due to epicycle and vertical perturbations. We analyzed those perturbations for relativistic and Newtonian gravitational models. As result, we found the unexpected effect of the duplication of the photons circular orbits for certain values of parameters related with the ring and BH, as well as zones of stability in the inner area of the matter ring. / Doutorado / Relatividade e Gravitação / Doutor em Ciências
|
Page generated in 0.0712 seconds