Spelling suggestions: "subject:"citelli"" "subject:"citellus""
1 |
Cited2, an autoregulated transcriptional modulator, in TGF-beta signalingChou, Yu-Ting 09 May 2006 (has links)
No description available.
|
2 |
Morphogenesis of testis cordsAlexander Combes Unknown Date (has links)
To date, studies into sex determination and gonadal development have focused on the regulatory mechanisms governing development of the male or female phenotype. However, the formation of the testis and ovary from the bipotential gonad also present a fascinating model of tissue organisation which has been largely overlooked. When seeking to understand tissue organisation during gonadal development, the formation of testis cords takes center stage. However, despite a growing understanding of the cellular events in testis development, a number of key questions about the formation of testis cords remain unanswered. Specifically, I aimed to investigate the role of cell migration in testis organization, and the structure and morphogenesis of testis cords in three dimensions. To address these aims experimentally, I investigated the early morphogenesis of testis cords and the dependence of cord formation on cell migration from the mesonephros. I found that virtually all of the migrating cells express endothelial markers, indicating that endothelial, not peritubular myoid cells underlie the dependence of cord formation on cell migration. Further, disruption of endothelial cell migration and vascular organisation using a blocking antibody to VE-cadherin, also disrupted the development of testis cords. These data reveal that migrating endothelial cells are required for testis cord formation, consistent with increasing evidence of a broader role for vasculature in establishing tissue architecture during organogenesis. To address the question of cord structure and morphogenesis, I developed and applied a novel fluorescence-based three-dimensional modeling approach to show that Sertoli cells coalesce into irregular groups surrounding germ cells, and that these groups are remodeled to form highly regular toroidal loops, joined by a flattened plexus at the dorsal side. This plexus is punctured by blood vessels as they ingress from the mesonephros, and contracts during maturation to form part of the rete testis. Variation in cord number and position demonstrates that cord establishment is not a stereotypic process. However, a tightly regulated modeling mechanism must contribute to uniformity on cord diameter and orientation as these parameters remain consistent across samples of the same age. These data clarify questions of cord structure and organisation, establish that cord formation is a variable process, and demonstrate novel structural features within the network of testis cords. Finally, to investigate an in vivo model where vascularisation and cord formation may be disrupted, I analysed gonads from embryos lacking Cited2. Consistent with a previous study, I found that testis development was delayed in Cited2-/- gonads, but found that despite the reported transcriptional recovery after the delay, testis vascular and cord structure was permanently disrupted. To investigate the defects in cord formation I assayed cell migration and found that migration was not disrupted in XY gonads, or mesonephroi lacking Cited2. However, ectopic cell migration was observed in the XX gonad in a dose-dependent response to loss of functional Cited2 alleles. Correspondingly, the female pathway was initially delayed but rallied for a late recovery, implicating Sf1 in the initiation of ovarian differentiation. These data underscore the fragility of the molecular control of sex determination as absence of Cited2 in the male permanently disrupts testis morphology, whereas in the female, promoters of the male pathway are not sufficiently suppressed. From these studies I construct an integrated model of testis cord formation and conclude that testis cord formation is a novel form of tubulogenesis. This morphogenesis is unique and offers insights into cell and tissue organisation, vascular interactions in organogenesis, and mechanisms of tube formation. Further study of cord formation is likely to lead to a broader understanding of tissue morphogenesis during development.
|
3 |
Cited2, an autoregulated transcriptional modulator, in TGF-beta signalingChou, Yu-Ting. January 2006 (has links)
Thesis (Ph. D.)--Case Western Reserve University, 2006. / [School of Medicine] Department of Pharmacology. Includes bibliographical references. Available online via OhioLINK's ETD Center.
|
Page generated in 0.0321 seconds