1 |
Investigating the Roles of Tat Specific Factor 1 in Both HIV-1 and Cellular Gene ExpressionMiller, Heather Bennett January 2009 (has links)
<p>HIV-1 relies on both viral and cellular host factors for expression of its genome. Tat specific factor 1 (Tat-SF1) was identified as a cellular cofactor required for enhanced transcription of HIV-1 <italic>in vitro</italic>. Insight into the role of Tat-SF1 in the HIV-1 lifecycle has previously been limited to immunodepletions and <italic>in vitro</italic> analyses or transient overexpression experiments. Here, we present studies that utilize RNA interference (RNAi) to reevaluate Tat-SF1's role in Tat transactivation and HIV-1 replication <italic>in vivo</italic>. We report that although Tat-SF1 depletion reduces HIV-1 infectivity, it does not affect Tat transactivation <italic>in vivo</italic>. However, Tat-SF1 depletion changes the levels of unspliced and spliced RNAs. We propose that Tat-SF1 has a novel role of post-transcriptionally regulating HIV-1 gene expression, possibly through alternative splicing.</p><p>The functions of Tat-SF1 in cellular gene expression are not well understood, so we utilized the stable cell lines constructed for our HIV-1 studies to investigate the cellular functions of Tat-SF1. To identify target genes of Tat-SF1, we employed a combination of RNAi and human exon arrays. These arrays, which survey both transcript-level and exon-level changes genome-wide, revealed approximately 1,400 genes with alternative exon usage after Tat-SF1 depletion (p≤0.01). In contrast, 500 genes showed significant transcript-level changes (p≤0.01), all with minimal fold changes. Computational analyses showed that genes with alternative exon usage after Tat-SF1 depletion were over-represented in the insulin signaling and ubiquitin mediated proteolysis biological pathways. Furthermore, there was approximately 2-fold enrichment of Tat-SF1 target genes among previously reported HIV-1 dependency factors. The type of exon choice affected by Tat-SF1 depletion exhibited a strong 5’ bias. Finally, a novel Tat-SF1 binding motif, GACGGG, was found to be over-represented among target genes and may play a functional role in first exon choice. Together, these data are the strongest evidence to date of Tat-SF1 functioning in both transcription and splicing of cellular genes.</p> / Dissertation
|
2 |
Mécanismes moléculaires régulés par la méthyltransférase EZH2 dans les corticosurrénalomes / Molecular mechanisms regulated by the histone methyltransferase EZH2 in adrenocortical carcinomasTabbal, Houda 15 November 2018 (has links)
Les cortico-surrénalomes (CCS) sont considérés comme des tumeurs malignes endocriniennes rares, associées à un pronostic sombre. Les trois mécanismes moléculaires les plus fréquemment altérés dans les CCS comprennent les mutations inactivatrices du gène suppresseur de tumeur TP53,la surexpression de IGF-II et l'activation constitutive de la voie de signalisation Wnt/β-caténine. En utilisant des modèles de souris transgéniques, nous avons montré que ces altérations, même combinées, ne sont pas suffisantes pour permettre la progression maligne.Nous avons précédemment identifié l'histone méthyltransférase EZH2 comme le modificateur d'histone le plus dérégulé dans les CCS. Nous avons également montré que sa surexpression est associée à une progression tumorale et à un mauvais pronostic. Cependant, les mécanismes sous-jacents de cette agressivité sont largement inconnus. Dans cette étude, nous avons cherché à identifier les gènes cibles de EZH2 dans les CCS, qui sont soient activés, soient réprimés. Ainsi, nous avons effectué une analyse bio-informatique des données du transcriptome de trois cohortes de patients porteurs de CCS. L’analyse montre une forte corrélation entre la surexpression de EZH2 et les gènes régulés positivement, suggérant un rôle majeur d’inducteur transcriptionnel de EZH2 dans les CCS. Nous avons montré que cette activité positive repose sur une interaction entre EZH2 et E2F1, qui entraîne la surexpression de gènes impliqués dans la régulation du cycle cellulaire et la mitose tels que RRM2,PTTG1 et PRC1/ASE1. Nous avons montré que l'inhibition de RRM2 par ARN interférent ou traitement pharmacologique avec le GW8510 inhibe la croissance cellulaire, la capacité à combler les blessures, la croissance clonogénique, la migration et induit l'apoptose des cellules H295R en culture. En revanche, l'expression du facteur pro-apoptotique NOV/CCN3 est diminuée dans les CCS, ce qui est corrélé au développement de tumeurs agressives. Nos analyses moléculaires montrent que l'inhibition de EZH2 augmente l'expression de NOV/CCN3, suggérant que la surexpression de EZH2 pourrait favoriser la progression maligne des CCS en inhibant les stimulateurs de l'apoptose. Le facteur NOV a déjà été identifié comme cible négative du récepteur nucléaire SF1 dans les cellules du CCS, bien que les mécanismes moléculaires à l'origine de cette inhibition n'aient pas été identifiés. De manière intéressante, dans le cancer de la prostate, l'expression de NOV est inhibée par le récepteur des androgènes AR, grâce au recrutement de EZH2 qui pose la marque répressive H3K27me3. Nous avons pu identifier une coopération similaire entre SF1 et EZH2 pour réprimer l'expression de NOV et bloquer ainsi l'apoptose dans les CCS.Au total, ces résultats identifient SF1 et E2F1 comme deux partenaires indépendants de EZH2, induisant la répression de facteurs pro-apoptotiques et l'activation des gènes du cycle cellulaire respectivement, conduisant ainsi à l'agressivité des CCS. / Adrenocortical carcinomas (ACC) are regarded as rare endocrinemalignancies associated with dismal prognosis. The three common molecularmechanisms predominantly altered in ACC include inactivating mutations of theTP53 tumor suppressor gene, overexpression of IGF-II and constitutive activationof the Wnt/β-catenin signaling pathway. Using transgenic mouse models, wehave shown that these alterations, even when combined together, were notsufficient to induce malignant progression.We previously identified the histone methyltransferase EZH2 as the mostderegulated histone modifier in ACC. We have also shown that its overexpressionis associated with tumor progression and poor prognosis. Yet, the mechanismsunderlying this aggressiveness are largely unknown. Here, we aimed to identifyEZH2 target genes in ACC, which are either activated or repressed.Thus, we conducted a bio-informatics analysis of transcriptome data fromthree cohorts of ACC patients. The analysis showed a strong correlation betweenhighly expressed EZH2 and positively regulated genes suggesting a major role of‘transcriptional inducer‘ for EZH2 in ACC. We have shown that this positiveactivity relies on an interaction between EZH2 and E2F1 that results in theupregulation of genes implicated in cell cycle regulation and mitosis such asRRM2, PTTG1 and PRC1/ASE1. We showed that Inhibition of RRM2 by RNAinterference or pharmacological treatment with GW8510 inhibits cellular growth,wound healing, clonogenic growth, migration and induces apoptosis of H295Rcells in culture.In contrast, expression of the pro-apoptotic factor NOV/CCN3 is decreasedin ACC, which is correlated with development of aggressive tumours. Ourmolecular analyses show that EZH2 inhibition increases expression ofNOV/CCN3, suggesting that EZH2 overexpression may also favour malignantprogression in ACC by inhibition of apoptosis stimulators. NOV has previouslybeen identified as a negative target of the nuclear receptor SF1 in ACC cells,although the molecular mechanisms underlying this inhibition were unidentified.Interestingly, in prostate cancer, NOV expression is inhibited by the androgenreceptor, through recruitment of EZH2 and deposition of the H3K27me3 mark.We have been able to identify a similar cooperation between SF1 and EZH2 tosuppress NOV expression and block apoptosis in ACC.Altogether, these findings identifiy SF1 and E2F1 as two independentpartners of EZH2, inducing repression of proapoptotic factors, and activation ofcell cycle genes respectively, thus leading to aggressiveness of ACC.
|
3 |
Transcriptional Regulation of the Mouse Adrenal Cyclase Type 4 (Adcy4) in Y1 Adrenocortical Tumor CellsRui, Xianliang 20 May 2010 (has links)
Adenylyl cyclase (Adcy) is an important early effector of adrenocorticotrophin (ACTH) on the adrenal cortex; however, this enzyme consists of ten isozymes in mammalian cells and the factors governing the expression of different Adcy isozymes have not been well defined. The aim of this study is to investigate the regulation of mouse Adcy4, one of ten isozymes, in Y1 adrenocortical tumor cells and in mutant subclones derived from the Y1 cells. Adcy4 is expressed at a high level in brain but at lower levels in many other tissues including the Y1 cells. Moreover, this isozyme is specifically deficient in Y1 mutants with impaired steroidogenic factor 1 (SF1) activity. These observations support a hypothesis that Adcy4 expression is influenced by both ubiquitously expressed and tissue-specific transcription factors. My sequencing results indicate that mouse Adcy4 is highly homologous to the human and rat counterparts; its gene is located less than 1 kb downstream of Ripk3 and contains 26 exons. Primer extension and in silico analyses suggest that Adcy4 contains a TATA-less promoter and initiates transcription from multiple sites. Luciferase reporter gene assays indicate that Adcy4 promoter activity is mainly stimulated by the proximal GC-rich region but is inhibited by the first intron. This 124 bp GC-rich region is well conserved among several mammalian species and exhibits strong promoter activity in Y1 cells, which is functionally compromised in the Adcy4-deficient mutant. Within this region, three Sp1/Sp3- and one SF1-binding sites have been identified which bind the corresponding proteins Sp1 and Sp3 or SF1 in electrophoretic mobility shift assays (EMSAs). Site-directed mutagenesis reveals that the 5’-most Sp1/Sp3 site enhances Adcy4 promoter activity, whereas the middle Sp1/Sp3 and SF1 sites each repress this activity. In Y1 mutant cells, mutating the SF1 site restores Adcy4 promoter activity and knocking down SF1 with shRNA increases Adcy4 expression. All these data demonstrate that Adcy4 expression is under the control of the ubiquitous factors Sp1 and Sp3 and the tissue-specific factor SF1 and establish that SF1 is a repressor for Adcy4 promoter activity. This study is the first to demonstrate a repressor function for SF1 in certain promoter contexts.
|
4 |
Transcriptional Regulation of the Mouse Adrenal Cyclase Type 4 (Adcy4) in Y1 Adrenocortical Tumor CellsRui, Xianliang 20 May 2010 (has links)
Adenylyl cyclase (Adcy) is an important early effector of adrenocorticotrophin (ACTH) on the adrenal cortex; however, this enzyme consists of ten isozymes in mammalian cells and the factors governing the expression of different Adcy isozymes have not been well defined. The aim of this study is to investigate the regulation of mouse Adcy4, one of ten isozymes, in Y1 adrenocortical tumor cells and in mutant subclones derived from the Y1 cells. Adcy4 is expressed at a high level in brain but at lower levels in many other tissues including the Y1 cells. Moreover, this isozyme is specifically deficient in Y1 mutants with impaired steroidogenic factor 1 (SF1) activity. These observations support a hypothesis that Adcy4 expression is influenced by both ubiquitously expressed and tissue-specific transcription factors. My sequencing results indicate that mouse Adcy4 is highly homologous to the human and rat counterparts; its gene is located less than 1 kb downstream of Ripk3 and contains 26 exons. Primer extension and in silico analyses suggest that Adcy4 contains a TATA-less promoter and initiates transcription from multiple sites. Luciferase reporter gene assays indicate that Adcy4 promoter activity is mainly stimulated by the proximal GC-rich region but is inhibited by the first intron. This 124 bp GC-rich region is well conserved among several mammalian species and exhibits strong promoter activity in Y1 cells, which is functionally compromised in the Adcy4-deficient mutant. Within this region, three Sp1/Sp3- and one SF1-binding sites have been identified which bind the corresponding proteins Sp1 and Sp3 or SF1 in electrophoretic mobility shift assays (EMSAs). Site-directed mutagenesis reveals that the 5’-most Sp1/Sp3 site enhances Adcy4 promoter activity, whereas the middle Sp1/Sp3 and SF1 sites each repress this activity. In Y1 mutant cells, mutating the SF1 site restores Adcy4 promoter activity and knocking down SF1 with shRNA increases Adcy4 expression. All these data demonstrate that Adcy4 expression is under the control of the ubiquitous factors Sp1 and Sp3 and the tissue-specific factor SF1 and establish that SF1 is a repressor for Adcy4 promoter activity. This study is the first to demonstrate a repressor function for SF1 in certain promoter contexts.
|
5 |
Morphogenesis of testis cordsAlexander Combes Unknown Date (has links)
To date, studies into sex determination and gonadal development have focused on the regulatory mechanisms governing development of the male or female phenotype. However, the formation of the testis and ovary from the bipotential gonad also present a fascinating model of tissue organisation which has been largely overlooked. When seeking to understand tissue organisation during gonadal development, the formation of testis cords takes center stage. However, despite a growing understanding of the cellular events in testis development, a number of key questions about the formation of testis cords remain unanswered. Specifically, I aimed to investigate the role of cell migration in testis organization, and the structure and morphogenesis of testis cords in three dimensions. To address these aims experimentally, I investigated the early morphogenesis of testis cords and the dependence of cord formation on cell migration from the mesonephros. I found that virtually all of the migrating cells express endothelial markers, indicating that endothelial, not peritubular myoid cells underlie the dependence of cord formation on cell migration. Further, disruption of endothelial cell migration and vascular organisation using a blocking antibody to VE-cadherin, also disrupted the development of testis cords. These data reveal that migrating endothelial cells are required for testis cord formation, consistent with increasing evidence of a broader role for vasculature in establishing tissue architecture during organogenesis. To address the question of cord structure and morphogenesis, I developed and applied a novel fluorescence-based three-dimensional modeling approach to show that Sertoli cells coalesce into irregular groups surrounding germ cells, and that these groups are remodeled to form highly regular toroidal loops, joined by a flattened plexus at the dorsal side. This plexus is punctured by blood vessels as they ingress from the mesonephros, and contracts during maturation to form part of the rete testis. Variation in cord number and position demonstrates that cord establishment is not a stereotypic process. However, a tightly regulated modeling mechanism must contribute to uniformity on cord diameter and orientation as these parameters remain consistent across samples of the same age. These data clarify questions of cord structure and organisation, establish that cord formation is a variable process, and demonstrate novel structural features within the network of testis cords. Finally, to investigate an in vivo model where vascularisation and cord formation may be disrupted, I analysed gonads from embryos lacking Cited2. Consistent with a previous study, I found that testis development was delayed in Cited2-/- gonads, but found that despite the reported transcriptional recovery after the delay, testis vascular and cord structure was permanently disrupted. To investigate the defects in cord formation I assayed cell migration and found that migration was not disrupted in XY gonads, or mesonephroi lacking Cited2. However, ectopic cell migration was observed in the XX gonad in a dose-dependent response to loss of functional Cited2 alleles. Correspondingly, the female pathway was initially delayed but rallied for a late recovery, implicating Sf1 in the initiation of ovarian differentiation. These data underscore the fragility of the molecular control of sex determination as absence of Cited2 in the male permanently disrupts testis morphology, whereas in the female, promoters of the male pathway are not sufficiently suppressed. From these studies I construct an integrated model of testis cord formation and conclude that testis cord formation is a novel form of tubulogenesis. This morphogenesis is unique and offers insights into cell and tissue organisation, vascular interactions in organogenesis, and mechanisms of tube formation. Further study of cord formation is likely to lead to a broader understanding of tissue morphogenesis during development.
|
6 |
Investigating the Role of Steroidogenic Factor 1 (SF1) Neurons in Energy Balance: An Analysis of Predator Odor-Induced Skeletal Muscle Thermogenesis in Mice Utilizing DREADD TechnologyWatts, Christina Alexis 24 April 2023 (has links)
No description available.
|
7 |
Transcriptional Regulation of Steroidogenesis by FSH/Cyclic AMP Requires Beta-cateninParakh, Tehnaz N. 20 July 2006 (has links)
No description available.
|
8 |
Transcriptional regulation of the Human Zfm1/Sf1 Gene / Transkriptionelle Regulation des humanen Zfm1/ Sf1-GensNogoy, Nicole Alberta 05 July 2006 (has links)
No description available.
|
9 |
Role of the ventromedial hypothalamus in control of innate defensive behavioursWroblewska, Natalia January 2018 (has links)
Our senses are constantly bombarded with information. How does the brain integrate such a variety of inputs to generate appropriate behaviours? Innate defensive behaviours are a good model to address this question. They are essential for animal survival and the brain circuits that control them are highly conserved across species. Moreover, the sensory inputs and behavioural outputs can be well defined and reliably reproduced in the lab. This allows us to study function of the individual components of the circuit controlling these behaviours. Ventromedial hypothalamus (VMH) is a key brain region for controlling responses to predators; it has been shown that inactivating the VMH can reduce defensive behaviours. Interestingly, activating the VMH output neurons (SF1+ cells) can produce a variety of different behaviours, from immobility to escape, depending on the intensity of activation. During my PhD I used a variety of approaches to address the question of the function of the VMH in control of defensive behaviours. At first I hypothesised that the VMH might act as a centre responsible for choosing an appropriate behavioural response according to the stimulus. I set to investigate how different activation levels of SF1+ neurons can produce such different behavioural outputs, and how this activity is modulated in vivo in response to predator stimuli. I began the project by quantifying mouse defensive behaviours in response to olfactory and auditory predator cues, as well as to the optogenetic activation of SF1+ neurons. I then questioned whether there was heterogeneity within the population of SF1+ neurons, which could explain their ability to trigger different behaviours. I performed patch clamp recordings from acute brain slices and conducted a study of the electrophysiological properties of SF1+ neurons. I next investigated how SF1+ neurons integrate excitatory inputs from the medial amygdala, a region which receives olfactory inputs from the accessory olfactory bulb. By combining optogenetics with slice electrophysiology and behavioural assessment, I described the physiology and relevance of this connection. Finally, I investigated in vivo activity in the VMH in response to predator cues by performing calcium imaging of the VMH neurons in freely moving mice. By presenting different sensory stimuli, I addressed the question of heterogeneity of the input pattern to the VMH neurons and the relationship between the VMH activity and the behavioural output. Taken all together, the results of this project have led to a hypothesis whereby the function of the VMH is to facilitate rather than directly control the choice of an appropriate behavioural response.
|
Page generated in 0.0274 seconds