• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modular friction test rig for measuring torque and tension in threaded fasteners / Modulär friktionsrigg för mätning av moment och töjning i gängade fästelement

Afsharian, Reza, Theodoropoulos, Antonios January 2018 (has links)
This report describes the development of a modular friction test rig for threaded fasteners. This device can measure the shank torque and the clamp force during the tightening of threaded bolts, with a size of M3-M14 and clamp length of 30-160mm. The design allows the use of several load and torque cells and the range is up to 100kN clamp load and 200Nm applied torque. The test rig will be used for research purposes by Atlas Copco to determine the frictional characteristics in tightening and will allow the experiments on bolts with several materials, coatings and surface finishes. This report concludes to a design proposal evaluated with analytical methods and a prototype 3D model that demonstrate the working principle of the test rig. The measurements are taken from custom-made sensors that are developed with high standards, are easily interchangeable and can be calibrated individually. In addition, a device is developed to allow the user to change the stiffness of the joint. Finally, a future recommendation is made to allow the measurement of the under-head torque. This proposal is a breakthrough compared to other test rigs, and will assist in verifying the friction measurements and having high precision results. / Denna rapport beskriver utvecklingen av en modulär friktionsprovrigg för gängade fästelement. Den utvecklade enheten kan mäta moment och klämkraft under åtdragning av gängade skruvar, med en storlek mellan M3 och M14 och klämlängd på 30-160mm. Designen möjliggör användning av flera last- och vridmomentceller och intervallet är upp till 100kN klämbelastning och 200Nm påfört vridmoment. Provriggen är en forskningsrigg, och den kommer att användas av Atlas Copco för att bestämma friktionsegenskaperna i åtdragning och möjliggöra experiment på skruvar av olika material, och med olika ytbeläggningar och ytbehandlingar. Denna rapport avslutas med ett designförslag, som utvärderas analytiskt och testprincipen demonstreras med hjälp av en prototyp. Mätningarna tas från skräddarsydda sensorer, som kan kalibreras individuellt och som är enkelt utbytbara. Dessutom är en anordning utvecklad för att tillåta användaren att ändra styvheten hos förbandet. Slutligen ges en rekommendation för en vidareutveckling, som möjliggör mätning av skallmomentet. Detta förslag är ett genombrott jämfört med andra existerande testriggar, och kommer att bidra till att verifiera friktionsmätningarna med hög precision.
2

Classification of ultrasonic signals using machine learning to identify optimal frequency for elongation control : Threaded fastening tools

Bahy, Mazen January 2022 (has links)
Studying the preload in a screw joint has been the focus of today’s industry. The manufacturer reflects that demand by investigating different opportunities and techniques to develop this area. There are four different ways of controlling the tightening of bolts and joints to achieve the required clamp force that can hold for a specific preload. Torque control, angle control, gradient control, and ultrasonic clamp-force or elongation control. Many studies do exist about the first three mentioned techniques. However, there are a small number of studies for the ultrasonic clamp-force technique, and there is no study focusing on the usage of machine learning in that technique. This study investigates the use of machine learning to find the optimal frequency used to transmit the ultrasonic signals into the bolt for calculating the bolt elongation. Two machine learning models have been constructed, presenting two approaches: one for one-dimensional data (1D-CNN) and one for two-dimensional data (2D-CNN). The models classify the received signals (echos) with different frequencies into either accepted or non-accepted signals to get the optimal frequencies to be used later on, in the bolt elongation process. Both the 1D-CNN and 2D-CNN show an accepted performance of around 85% accuracy. The results indicate that there does exist a pattern in these ultrasonic signals that are useful for classifying them into accepted and non-accepted frequencies, so the usage of machine learning for the problem is feasible. / Att studera förspänningen i en skruvförband har varit i fokus för dagens industri. Tillverkaren speglar den efterfrågan genom att undersöka olika möjligheter och tekniker för att utveckla detta område. Det finns fyra olika sätt att kontroller åtdragningen av bultar för att uppnå den erforderliga klämkraften som kan hålla för en specifik förspänning. Vridmomentkontroll, vinkelkontroll, gradientkontroll och ultraljudskontroll av klämkraft. Det finns många studier om de tre förstnämnda teknologier. Det finns dock ett litet antal studier för ultraljudsklämkraftstekniken, och det finns ingen studie som fokuserar på användningen av maskininlärning i den tekniken. Denna studie undersöker användningen av maskininlärning för att hitta den optimala frekvensen som används för att beräkna bultens förlängning. Två maskininlärningsmodeller har konstruerats, som presenterar två metoder: en för endimensionell data (1D-CNN) och en för två-dimensionella data (2D-CNN). Modellerna klassificerar de mottagna signalerna (ekon) med olika frekvenser i antingen accepterade eller icke-accepterade signaler för att få de optimala frekvenserna att användas senare, i bultförlängningsprocessen. Både 1D-CNN och 2D-CNN visar en accepterad prestanda på cirka 85% noggrannhet. Resultaten indikerar att det finns ett mönster i dessa ultraljudssignaler som är användbara för att klassificera dem i accepterade och icke-accepterade frekvenser, så användningen av maskininlärning för problemet är genomförbar.

Page generated in 0.043 seconds