1 |
Vector correlations in gas-phase inelastic collision dynamicsMcCrudden, Garreth January 2017 (has links)
This thesis presents a joint experimental and theoretical study of vector correlations in the electronically, vibrationally, and rotationally inelastic collisions of simple molecules with rare-gas atoms. In the first instance, empirical and calculated data are presented for rotationally inelastic scattering in the NO(X)+Ar and ND<sub>3</sub>(X̃)+Ar systems at collision energies in the range 405-2210 cm<sup>-1</sup>. These experiments - the first to be conducted on a newly commissioned crossed-molecular beam machine - measured the k-k' correlation, i.e. that between the vectors describing the relative velocities before and after collision, respectively. The empirical data were subjected to rigorous comparison with both quantum-mechanical and quasi-classical trajectory (QCT) calculations. For both the NO(X)+Ar and ND<sub>3</sub>(X̃)+Ar systems, there is generally good agreement between experiment and theory at all four collision energies investigated. Two chapters of this thesis focus on the development of trajectory surface-hopping (TSH) QCT models of the OH(A, v = 0)+Kr and OH(A, v = 0)+Xe systems. Experimental data relating to scalar quantities (rotational energy transfer (RET) and electronic quenching) and to the j-j' correlation (which quantifies the depolarisation of the angular momentum of the OH(A) radical) are compared to variable-collision-energy TSH QCT calculations in which the length of the OH bond is fixed. The algorithms involve all three PESs of the OH(A/X)+Kr system, and the full range of electrostatic and roto-electronic mechanisms that couple them, for the first time. The most complete model succeeded in accounting for 93% of experimentally observed quenching. For the OH(A/X)+Xe system, coupling matrix elements were estimated from those of OH(A/X)+Kr, and the most complete model recovered 63% of experimentally observed quenching. This thesis also presents a novel theoretical study of rotationally inelastic dynamics in the OH(A, v = 1)+Kr system. Provisional results from adiabatic calculations in which the OH bond length is allowed to vary over the course of a trajectory are presented alongside experimental data that were reported previously. To date, these calculations continue to underestimate the extent of empirical RET data. Reasons for the observed discrepancy, and suggestions to resolve it, are outlined in detail.
|
2 |
Charged Particle Transport and Confinement Along Null Magnetic Curves and in Various Other Nonuniform Field Configurations for Applications in Antihydrogen ProductionLane, Ryan A. 05 1900 (has links)
Comparisons between measurements of the ground-state hyperfine structure and gravitational acceleration of hydrogen and antihydrogen could provide a test of fundamental physical theories such as CPT (charge conjugation, parity, time-reversal) and gravitational symmetries. Currently, antihydrogen traps are based on Malmberg-Penning traps. The number of antiprotons in Malmberg-Penning traps with sufficiently low energy to be suitable for trappable antihydrogen production may be reduced by the electrostatic space charge of the positrons and/or collisions among antiprotons. Alternative trap designs may be needed for future antihydrogen experiments. A computational tool is developed to simulate charged particle motion in customizable magnetic fields generated by combinations of current loops and current lines. The tool is used to examine charged particle confinement in two systems consisting of dual, levitated current loops. The loops are coaxial and arranged to produce a magnetic null curve. Conditions leading to confinement in the system are quantified and confinement modes near the null curve and encircling one or both loops are identified. Furthermore, the tool is used to examine and quantify charged particle motion parallel to the null curve in the large radius limit of the dual, levitated current loops. An alternative to new trap designs is to identify the effects of the positron space in existing traps and to find modes of operation where the space charge is beneficial. Techniques are developed to apply the Boltzmann density relation along curved magnetic field lines. Equilibrium electrostatic potential profiles for a positron plasma are computed by solving Poisson's equation using a finite-difference method. Equilibria are computed in a model Penning trap with an axially varying magnetic field. Also, equilibria are computed for a positron plasma in a model of the ALPHA trap. Electric potential wells are found to form self-consistently. The technique is expanded to compute equilibria for a two-species plasma with an antiproton plasma confined by the positron space charge. The two-species equilibria are used to estimate timescales associated with three-body recombination, losses due to collisions between antiprotons, and temperature equilibration. An equilibrium where the three-body recombination rate is the smallest is identified.
|
3 |
Examination of Magnetic Plasma ExpulsionPhillips, Ryan Edward 05 1900 (has links)
Magnetic plasma expulsion uses a magnetic field distortion to redirect incident charged particles around a certain area for the purposes of shielding. Computational studies are carried out and for certain values of magnetic field, magnetic plasma expulsion is found to effectively shield a sizable area. There are however many plasma behaviors and interactions that must be considered. Applications to a new cryogenic antimatter trap design are discussed.
|
4 |
Theoretical studies of the dynamics and spectroscopy of weakly bound systemsLópez, José G. 10 October 2005 (has links)
No description available.
|
5 |
Theoretical and experimental studies of energy transfer dynamics in collisions of atomic and molecular species with model organic surfacesAlexander, William Andrew 06 May 2009 (has links)
A full understanding of chemical reaction dynamics at the gas/organic-surface interface requires knowledge of energy-transfer processes that happen during the initial gas/surface collision. We have examined the influence of mass and rovibrational motion on the energy-transfer dynamics of gas-phase species scattering from model organic surfaces using theory and experiment. Molecular-beam scattering techniques were used to investigate the rare gases, Ne, Ar, Kr, and Xe, and the diatomics, N<sub>2</sub> and CO, in collisions with CH<sub>3</sub>- and CF<sub>3</sub>-terminated self-assembled monolayer (SAM) surfaces. Complementary molecular-dynamics simulations were employed to gain an atomistic view of the collisions and elucidate mechanistic details not observable with our current experimental apparatus. We developed a systematic approach for obtaining highly accurate analytic intermolecular potential-energy surfaces, derived from high-quality ab initio data, for use in our classical-trajectory simulations. Results of rare gas scattering experiments and simulations indicate mass to be the determining factor in the energy-transfer dynamics, while other aspects of the potential-energy surface play only a minor role. Additionally, electronic-structure calculations were used to correlate features of the potential-energy surface with the energy-transfer behavior of atoms and small molecules scattering from polar and non-polar SAM surfaces. Collisions of diatomic molecules with SAMs are seen to be vibrationally adiabatic, however translational energy transfer to and from rotational modes of the gas species, while relatively weak, is readily apparent. Examination of the alignment and orientation of the final rotational angular momentum of the gas species reveals that the collisions induce a stereodynamic preference for the expected "cartwheel" motion, as well as a surprising propensity for "corkscrew" or "propeller" motion. The calculated stereodynamic trends suggest that the CH<sub>3</sub>-SAM is effectively more corrugated than the CF<sub>3</sub>-SAM. Finally, the feasibility for collisional-energy promoted, direct gas/organic-surface reactions was interrogated using the 1,3-dipolar azide-alkyne cycloaddition reaction. We found that geometrical constraints prevented the reaction from proceeding at the probed conditions. / Ph. D.
|
6 |
Theoretical studies of the dynamics of gas-phase and gas/surface atom+alkane reactions and of the structure and dynamics of water confined between hydrophobic surfacesLayfield, Joshua Parker 10 March 2011 (has links)
Comprehension of reactive chemical dynamics in the gas phase and at the gas/organic-surface interface and non-reactive dynamics at the interface between hydrophobic surfaces and water requires an understanding of the fundamental atomic and molecular interactions that undergird these important phenomena. In an effort to study these regimes of chemical interaction, we have performed computational simulations that probe the dynamics of chemical systems that exemplify each of these domains. To study gas-phase chemical dynamics, we reparametrized semiempirical Hamiltonians so that they can accurately describe the potential energy surfaces for two distinct atom+alkane reactions. In addition to their demonstrated accuracy, these methods possess the attractive quality of being computationally inexpensive enough to afford extensive direct-dynamics trajectory studies. Our results on the dynamics of atom+alkane hydrogen-abstraction reactions have shown good agreement with experimental metrics that are as diverse as product velocity distributions, excitation functions, angular distributions and rovibrational state distributions for diatomic products of the abstraction. We have demonstrated that our reparametrized Hamiltonians are suitable for investigating gas-phase reactions with up to 15 (5 heavy) atoms and that they are appropriate for studying reactions beyond the gas phase, especially gas/surface reactions.
By employing our semiempirical methods within a quantum-mechanics/molecular-mechanics hybrid scheme we are able to examine hydrogen-abstraction reactions of fluorine atoms with alkanethiolate self-assembled monolayers. Our simulations reproduce the general trends of experimental results for the cousin F+squalane reaction. Our simulations also probe the role that secondary collisions play in determining the final internal and translational energy of the product HF molecules. For instance, we determined that very few interactions with the SAM surface were required to cool rotational and translational modes of the HF product, while its vibrational energy remains unchanged on the time scale that HF molecules trap on the SAM surface.
Moving beyond the gas/organic surface interface, we have also performed molecular-dynamics simulations of thin water films confined between hydrophobic SAM surfaces. These simulations illuminated the structural and dynamics behavior induced in the water films by confinement in hydrophobic environments. While most effects of the surface do not penetrate deep into the water layers we have noted that enhanced lateral diffusion of water molecules can persist in these films with > 1 nm length scales. We have elucidated a possible mechanistic precursor for the attractive forces seen in experimental measurement of the hydrophobic effect. / Ph. D.
|
7 |
Development of Monte Carlo track structure simulations for protons and carbon ions in waterLiamsuwan, Thiansin January 2012 (has links)
The goal of radiation therapy is to eradicate tumour cells while minimising radiation dose to healthy tissues. Ions including protons and carbon ions have gained increasing interest for cancer treatment. Advantages of ion beam therapy are conformal dose distribution, and for ions heavier than protons increased biological effectiveness in cell killing, compared to conventional radiation therapy using photons. Despite these advantages, fundamental problems in ion beam therapy include accuracy of dose determination at the cellular level, and characterisation of the radiation quality at the microscopic scale. Due to the high density of interactions along ion tracks, inhomogeneity of dose and track parameters at the cellular level is one of the major concerns for ion beam therapy. The aim of the thesis is to develop computational tools for dosimetry of ion tracks at the molecular level. Event-by-event Monte Carlo track structure (MCTS) simulations were developed for full-slowing-down tracks of protons and carbon ions in water representing cellular environment. In Paper I, the extension of the MCTS code KURBUC_proton was carried out to energies up to 300 MeV, covering the entire proton energy range used in radiation therapy. Physical properties and microdosimetry of proton tracks were investigated and benchmarked with the experimental data. Papers II-V describe the development of the MCTS code for full-slowing-down tracks of carbon ions. In Papers II-IV, the classical trajectory Monte Carlo (CTMC) model was developed for the calculation of interaction cross sections for low and intermediate energy carbon projectiles of all charge states (C0 to C6+) in water. In Paper V, the calculated cross sections were implemented in a new MCTS code KURBUC_carbon simulating carbon ions of energies 1-104 keV/u in water. This development allows the investigation of track parameters in the Bragg peak region of carbon ion beams. Publication of the thesis and the published papers make contribution to the physics of ion interactions in matter, and provide a new and complete database of electronic interaction cross sections for low and intermediate energy carbon projectiles of all charge states in water. The MCTS codes for protons and carbon ions provide new tools for biophysical study, including microdosimetry, of ion tracks at cellular and subcellular levels, in particular in the Bragg peak region of these ions. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4: Submitted. Paper 5: Submitted.</p><p> </p>
|
8 |
Multiscale Computational Analysis and Modeling of Thermochemical Nonequilibrium FlowHan Luo (9168512) 27 July 2020 (has links)
Thermochemical nonequilibrium widely exists in supersonic combustion, cold plasma and hypersonic flight. The effect can influence heat transfer, surface ablation and aerodynamic loads. One distinct feature of it is the coupling between internal energy excitation and chemical reactions, particularly the vibration-dissociation coupling. The widely used models are empirical and calibrated based on limited experimental data. Advances in theories and computational power have made the first-principle calculation of thermal nonequilibrium reaction rates by methods like quasi-classical trajectory (QCT) almost a routine today. However, the approach is limited by the uncertainties and availability of potential energy surfaces. To the best of our knowledge, there is no study of thermal nonequilibrium transport properties with this approach. Most importantly, non-trivial effort is required to process the QCT data and implement it in flow simulation methods. In this context, the first part of this work establishes the approach to compute transport properties by the QCT method and studies the influence of thermal nonequilibrium on transport properties for N<sub>2</sub>-O molecules. The preponderance of the work is the second part, a comprehensive study of the development of a new thermal nonequilibrium reaction model based on reasonable assumptions and approximations. The new model is as convenient as empirical models. By validating against recent QCT data and experimental results, we found the new model can predict nonequilibrium characteristics of dissociation reactions with nearly the same accuracy as QCT calculations do. In general, the results show the potential of the new model to be used as the standard dissociation model for the simulation of thermochemical nonequilibrium flows.
|
9 |
Excitation and fragmentation of CnN⁺ (n=1-3) molecules in collisions with He atoms at intermediate velocity ; fundamental aspects and application to astrochemistry / Excitation et fragmentation des molécules CnN⁺ (n = 1-3) en collision avec des atomes de He à vitesse intermédiaire ; aspects fondamentaux et application à l'astrochimieMahajan, Thejus 28 September 2018 (has links)
Dans cette thèse nous avons étudié des collisions entre des projectiles CnN⁺ (n=0,1,2,3) et des atomes d’Hélium à vitesse intermédiaire (2.25 u.a). A cette vitesse, proche de la vitesse des électrons sur les couches de valence externe des atomes et molécules, de nombreux processus électroniques prennent place avec une forte probabilité : ionisation (simple et multiple), excitation électronique, capture d’électron (simple et double). Nous avons mesuré les sections efficaces absolues de tous ces processus. Un autre aspect intéressant de la collision concerne la fragmentation des molécules excitées, que nous avons également mesurée précisément grâce à un dispositif dédié. Les expériences ont été effectuées auprès de l’accélérateur Tandem d’Orsay avec des faisceaux de quelques MeV d’énergie cinétique. Le dispositif AGAT a permis de réaliser les collisions (en condition de collision unique) et de mesurer tout à la fois les sections efficaces des processus et la fragmentation associée. Parallèlement nous avons simulé ces collisions d’un point de vue théorique en utilisant le modèle à Atomes et Electrons Indépendants (IAE) couplé à des calculs CTMC (Classical trajectory Monte Carlo). Sur cette base, nous avons prédit les sections efficaces qui se sont trouvées être en bon accord avec les mesures, à l’exception de la double capture d’électrons. Par ailleurs les rapports de branchement de dissociation des CnN⁺ après excitation électronique sont bien reproduits en utilisant la distribution d’énergie interne des espèces calculées avec le même modèle IAE/CTMC. Ces expériences nous ont permis de construire des « Breakdown Curves » (BDC), véritables cartes d’identité des molécules qui permettent de prévoir, dans le cadre d’une fragmentation statistique comment va fragmenter un système dont on connait l’énergie interne. Avec ces BDC nous avons pu prédire et recommander des rapports de branchement pour des voies de sortie de processus physiques et chimiques d’intérêt astrochimique. Ces données seront insérées dans la base internationale d'astrochimie the Kinetic Data Base for Astrochemistry KIDA. Cette thèse a été réalisée dans le cadre de l’Ecole Doctorale Ondes et Matière (EDOM) à l’Institut des Sciences Moléculaires d’Orsay (ISMO), à l’Université Paris-Sud Paris Saclay. / This thesis studies the aftermath of collision between singly positively charged Nitrogenated carbon species CnN⁺ (n=0,1,2,3) and neutral Helium atom at a velocity of 2.25 au. At this velocity, close to the velocity of outer electrons in atoms and molecules, several electronic processes take place and are near their maximum of probability such as ionisation (single, double, triple …), electronic excitation and electron capture (single and double). We looked at their cross sections and how their evolution with the molecule size. Following the collision the molecule can fragment, which leads to another interesting aspect, the fragmentation branching ratios. Collision experiments were done using a Tandem accelerator at Orsay that produced the CnN⁺ projectiles and a dedicated set-up, AGAT, to capture the flying fragments/intact molecule after collision according to their charge to mass ratio. Knowing the number of particles that are shot and the fact that our set-up allows no loss of fragments/intact molecule, we could get the probabilities of various fragments formed. Using these probabilities and a knowledge of the Helium jet profile used, we could measure their cross sections. The probabilities alone are sufficient to obtain the fragmentation branching ratios.The next step was to use a theoretical model to simulate the collision. We used Independent Atom and Electron (IAE) model coupled with Classical Trajectory Monte Carlo (CTMC) method to calculate the desired cross sections. A general good agreement was obtained, with the exception of double electron capture. The model could also predict, through the calculation of the species internal energy, the fragmentation branching ratios of cations CnN⁺ after electronic excitation. Also, the branching ratios were used to construct semi-empirical Breakdown Curves (BDCs), which are internal energy dependent dissociation branching ratios specific to each molecule, type, size and charge. With those, we could recommend products branching ratios to be used for various processes of astrochemical interest. The products branching ratios will be made available for a wider network of researchers under the international Kinetic Database for Astrochemistry (KIDA).This thesis was realized under the doctoral programme of Ecole Doctorale Ondes et Matiere (EDOM) with Institut des Sciences Moléculaires d’Orsay (ISMO) where the author was given an office and Université Paris-Sud where the author is formally enrolled.
|
Page generated in 0.0776 seconds