• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Clausal Relations and C-clones

Vargas Garcia , Edith Mireya 20 July 2011 (has links) (PDF)
We introduce a special set of relations on a finite set, called clausal relations. A restricted version of the Galois connection between polymorphisms and invariants, called Pol-CInv, is studied, where the invariant relations are clausal relations. Clones arising from this Galois connection, so-called C-clones, are investigated. Finally, we show that clausal relations meet a sufficient condition that is known to ensure polynomial time solvability of the corresponding CSP.
2

On the relationship of maximal C-clones and maximal clones / Über die Beziehung zwischen maximalen C-Klonen und maximalen Klonen

Behrisch, Mike, Vargas-García, Edith 10 January 2014 (has links) (PDF)
A restricted version of the Galois connection between polymorphisms and invariants, called Pol−CInv, is studied, where the invariant relations are restricted to so-called clausal relations. In this context, the relationship of maximal C-clones and maximal clones is investigated. It is shown that, with the exception of one special case occurring for Boolean domains, maximal C-clones are never maximal clones. / Wir untersuchen eine eingeschränkte Variante der Galoisverbindung zwischen Polymorphismen und invarianten Relationen, bezeichnet mit Pol−CInv, wobei die invarianten Relationen auf sogenannte klausale Relationen beschränkt werden. In diesem Zusammenhang wird die Beziehung zwischen maximalen C-Klonen und maximalen Klonen betrachtet. Es wird gezeigt, daß, mit Ausnahme eines Spezialfalles für Boolesche Grundmengen, maximale C-Klone niemals maximale Klone sind.
3

Clausal Relations and C-clones

Vargas Garcia, Edith Mireya 26 May 2011 (has links)
We introduce a special set of relations on a finite set, called clausal relations. A restricted version of the Galois connection between polymorphisms and invariants, called Pol-CInv, is studied, where the invariant relations are clausal relations. Clones arising from this Galois connection, so-called C-clones, are investigated. Finally, we show that clausal relations meet a sufficient condition that is known to ensure polynomial time solvability of the corresponding CSP.
4

On the relationship of maximal C-clones and maximal clones

Behrisch, Mike, Vargas-García, Edith 10 January 2014 (has links)
A restricted version of the Galois connection between polymorphisms and invariants, called Pol−CInv, is studied, where the invariant relations are restricted to so-called clausal relations. In this context, the relationship of maximal C-clones and maximal clones is investigated. It is shown that, with the exception of one special case occurring for Boolean domains, maximal C-clones are never maximal clones.:1 Introduction 2 Preliminaries 3 Proof of the main theorem 3.1 Principle of proof 3.2 Bounded orders 3.3 Non-trivial congruences 3.4 Selfdual functions 3.5 Quasilinear functions 3.6 Functions preserving central and h-regular relations 4 Concluding remarks References / Wir untersuchen eine eingeschränkte Variante der Galoisverbindung zwischen Polymorphismen und invarianten Relationen, bezeichnet mit Pol−CInv, wobei die invarianten Relationen auf sogenannte klausale Relationen beschränkt werden. In diesem Zusammenhang wird die Beziehung zwischen maximalen C-Klonen und maximalen Klonen betrachtet. Es wird gezeigt, daß, mit Ausnahme eines Spezialfalles für Boolesche Grundmengen, maximale C-Klone niemals maximale Klone sind.:1 Introduction 2 Preliminaries 3 Proof of the main theorem 3.1 Principle of proof 3.2 Bounded orders 3.3 Non-trivial congruences 3.4 Selfdual functions 3.5 Quasilinear functions 3.6 Functions preserving central and h-regular relations 4 Concluding remarks References

Page generated in 0.0963 seconds