Spelling suggestions: "subject:"clear surfaces""
1 |
Švarių paviršių paruošimas sūkuriniu pulsuojančiu srautu / Preparation of clean surfaces with pulsating vortex flowRalys, Aurimas 23 July 2012 (has links)
Šiame darbe tiriama švarių paviršių paruošimo sūkuriniu pulsuojančiu srautu galimybė. Darbo tikslas: išsiaiškinti švarių paviršių paruošimo galimybę, naudojant vandens srautą, kuriame turbulencijos lėtėjimo dėka sukeliama kavitacija. Darbas sudarytas iš keturių dalių. Pradžioje apibūdinami švarūs paviršiai, jų klasifikacija. Toliau apžvelgiami švarių paviršių paruošimo metodai, problemos. Po to, skaitmeninės simuliacijos būdu, tiriamos sūkurinį pulsuojantį srautą generuojančių purkštukų konstrukcijos. Eksperimentinėje dalyje pateikiami bandymo rezultatai, kuomet iš aliumininės plokštelės šalinamos abrazyvo liekanos, įstrigusios paviršiuje šlifavimo metu. Darbo pabaigoje pateikiamos išvados. Darbo apimtis – 51 psl. teksto be priedų, 36 iliustracijos, 3 lentelės, 13 bibliografinių šaltinių. Atskirai pridedami darbo priedai. / This study investigates the preparation of clean surfaces with pulsating vortex flow option. The aim of work: to determine the possibility of clean surface preparation using a water flow with generated cavitation. The work consists of four parts. At the start of the work characterized clean surfaces and their classification. The following provides an overview of clean surface preparation methods, problems. After that, the digital simulation method investigated vortex-generating jets pulsating flow structures. In the experimental part are presented the test results, when the aluminum plate is disposed abrasive residues trapped on the surface of the grinding time. At the end of the work there are given conclusions. Work size - 51 text pages without appendixes, 36 figures, 3 tables, 13 bibliographical sources.
|
2 |
Schwefelinduzierte Strukturen auf der Palladium (111)-Oberfläche nach Segregation bzw. Adsorption von Schwefel / Structures of sulfur on palladium (111) created by adsorption and segregation of sulfurRauch, Thomas 15 September 2000 (has links)
In dieser Arbeit konnte erstmals die Stapelfolge der reinen Pd(111)-Oberfläche aus atomar aufgelösten RTM-Messungen einer Stufe bestimmt werden. Die Ergebnisse dieser Messungen wurden durch LEED-Messungen bestätigt. Damit ist es möglich, in einer RTM-Messung zwischen den unterschiedlichen dreifach koordinierten Adsrptionsplätzen zu unterscheiden. Basierend auf diesen Ergebnissen wurden die unterschiedlichen Strukturen von einer schwefelbedeckten Pd(111)-Oberfläche untersucht. Dabei bestimmen die Präparationsbedingungen die sich bildende Struktur. Die Oberfläche wurde sowohl durch Adsorption von H²S-Gas als auch durch Segregation von Schwefelverunreinigungen aus dem Volumen präpariert. Unterschiede zwischen den beiden Präparationsmechanismen wurden herausgearbeitet, Präparationsbedingungen zur selektiven Präparation einzelner Strukturen wurden bestimmt. Basierend auf atomar aufgelösten Spektroskopiemessungen und Simulationsrechnungen konnte ein neues Modell der (√7 × √7)R19°-Struktur entwickelt werden. Die Messungen an der (2 × 2)- bzw. der √3 × √3)-Struktur bestätigen die bekannten Strukturmodelle.
|
3 |
The atomic structure of the clean and adsorbate covered Ir(110) surface / Die atomare Struktur der reinen und adsorbatbedeckten Ir(110) OberflächeKuntze, Jens 26 September 2000 (has links)
The adsorption and coadsorption of sulfur and oxygen on the Ir(110) surface was investigated by scanning tunneling
microscopy (STM), low-energy electron diffraction (LEED), and Auger electron spectroscopy (AES). The clean
Ir(110) surface forms alternating (331) and (33-1) minifacets, resulting in a mesoscopically rippled surface. Upon
chemisorption of sulfur or oxygen and subsequent annealing, the surface structure is changed. In the following, the
results concerning sulfur and oxygen adsorption will be summarized before addressing the coadsorption system.
Sulfur adsorption: At sulfur coverages of 0.1-0.2 ML, the Ir(110) surface adopts a (1x2) missing-row configuration
similar to clean Au(110) and Pt(110). The sulfur-stabilized Ir(110)-(1x2) does not show any evidence for the
preference of (111) faceted steps, and consequently does not form a mesoscopic fish-scale pattern. The latter was
observed on the (110) surfaces of Au and Pt, and was found to be driven by the preference for (111) step facets. On
Ir(110), no such preference seems to exist, since (331) step facets are frequently observed. With respect to the
adsorbed sulfur, no extended islands are observed, indicating repulsive adsorbate-adsorbate interactions.
At sulfur coverages near 0.5 ML, a p(2x2) structure with p2mg (glide-plane) symmetry is observed. The adsorption site
and structural model derived by STM are compatible with an earlier LEED analysis of that structure: S adsorbs in
threefold coordinated fcc hollow sites above the (111) facets formed by the non-missing substrate rows.
At coverages higher than 0.5 ML, a c(2x4) LEED pattern with additional faint streaks in the [-110] azimuth is observed.
STM reveals that the streaks are due to pairs of sulfur atoms (dimers, for brevity) in a second adsorbate layer, that can
be desorbed by heating to 1100 K. A structural model is derived on the basis of the STM results, showing the dimer
atoms in on-top positions over sulfur atoms of the first adsorbate layer. When the surface is completely covered by the
dimers, the surface is saturated at 0.75 ML.
Oxygen adsorption: In agreement with earlier reports, oxygen adsorption and subsequent annealing to 700-900 K results
in an unreconstructed (1x1) surface, covered by a c(2x2)-O overlayer at 0.5 ML coverage.
Coadsorption of oxygen on an S-precovered surface (S-coverage below 0.5 ML) leads to a phase separation of the
adsorbates (competitive adsorption). At low coverages, oxygen forms a p(2x2)-O phase, whereas at higher
O-coverages a compression into a (1x2)-O phase is observed. Postannealing the (1x2)-O phase at 900 K in vacuum
leads to a reduction of the sulfur concentration, indicating sulfur oxidation. Interestingly, the p(2x2)-O phase does not
seem to be reactive, according to the AES results. A possible explanation may be that the more densely packed
(1x2)-O phase can be regarded as an activated structure. This is also supported by the STM results.
At S-coverages above 0.5 ML, the surface is completely poisoned with respect to oxygen adsorption. Nevertheless,
heating the sulfur saturated Ir(110)-c(2x4)-S structure in an oxygen atmosphere, the sulfur concentration gradually
drops to zero. At intermediate stages of this oxidation process, island formation is observed by STM, but the underlying
formation processes remain to be resolved.
|
4 |
Defect structure and optical properties of alkaline-earth fluoridesShi, Hongting 25 May 2007 (has links)
I present and discuss the results of calculations ofelectronic structures of perfect and defective CaF2 and BaF2 crystals. These are based on the ab initio Hartree-Fock method with electron correlation corrections and ondensity-functional theory calculations with different exchange-correlation functionals, including hybrid exchange techniques.The defective systems include F centers, M centers, O-V dipoles, Hydrogen impurities and H centers.
|
5 |
Structural and magnetic properties of ultrathin Fe3O4 films: cation- and lattice-site-selective studies by synchrotron radiation-based techniquesPohlmann, Tobias 19 August 2021 (has links)
This work investigates the growth dynamic of the reactive molecular beam epitaxy of Fe3O4 films, and its impact on the cation distribution as well as on the magnetic and structural properties at the surface and the interfaces. In order to study the structure and composition of Fe3O4 films during growth, time-resolved high-energy x-ray diffraction (tr-HEXRD) and time-resolved hard x-ray photoelectron spectroscopy (tr-HAXPES) measurements are used to monitor the deposition process of Fe3O4 ultrathin films on SrTiO3(001), MgO(001) and NiO/MgO(001). For Fe3O4\SrTiO3(001) is found that the film first grows in a disordered island structure, between thicknesses of 1.5nm to 3nm in FeO islands and finally in the inverse spinel structure of Fe3O4, displaying (111) nanofacets on the surface. The films on MgO(001) and NiO/MgO(001) show a similar result, with the exception that the films are not disordered in the early growth stage, but form islands which immediately exhibit a crystalline FeO phase up to a thickness of 1nm. After that, the films grown in the inverse spinel structure on both MgO(001) and NiO/MgO(001). Additionally, the tr-HAXPES measurements of Fe3O4/SrTiO3(001) demonstrate that the FeO phase is only stable during the deposition process, but turns into a Fe3O4 phase when the deposition is interrupted. This suggests that this FeO layer is a strictly dynamic property of the growth process, and might not be retained in the as-grown films. In order to characterize the as-grown films, a technique is introduced to extract the cation depth distribution of Fe3O4 films from magnetooptical depth profiles obtained by fitting x-ray resonant magnetic reflectivity (XRMR) curves. To this end, x-ray absorption (XAS) and x-ray magnetic circular dichroism (XMCD) spectra are recorded as well as XRMR curves to obtain magnetooptical depth profiles. To attribute these magnetooptical depth profiles to the depth distribution of the cations, multiplet calculations are fitted to the XMCD data. From these calculations, the cation contributions at the three resonant energies of the XMCD spectrum can be evaluated. Recording XRMR curves at those energies allows to resolve the magnetooptical depth profiles of the three iron cation species in Fe3O4. This technique is used to resolve the cation stoichiometry at the surface of Fe3O4/MgO(001) films and at the interfaces of Fe3O4/MgO(001) and Fe3O4/NiO. The first unit cell of the Fe3O4(001) surface shows an excess of Fe3+ cations, likely related to a subsurface cation-vacancy reconstruction of the Fe3O4(001) surface, but the magnetic order of the different cation species appears to be not disturbed in this reconstructed layer. Beyond this layer, the magnetic order of all three iron cation species in Fe3O4/MgO(001) is stable for the entire film with no interlayer or magnetic dead layer at the interface. For Fe3O4/NiO films, we unexpectedly observe a magnetooptical absorption at the Ni L3 edge in the NiO film corresponding to a ferromagnetic order throughout the entire NiO film, which is antiferromagnetic in the bulk. Additionally, the magnetooptical profiles indicate a single intermixed layer containing both Fe2+ and Ni2+ cations.
|
Page generated in 0.0395 seconds