• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Functional studies of a membrane-anchored cellulase from poplar

Jonsson Rudsander, Ulla January 2007 (has links)
Cellulose in particular and wood in general are valuable biomaterials for humanity, and cellulose is now also in the spotlight as a starting material for the production of biofuel. Understanding the processes of wood formation and cellulose biosynthesis could therefore be rewarding, and genomics and proteomics approaches have been initiated to learn more about wood biology. For example, the genome of the tree Populus trichocarpa has been completed during 2006. A single-gene approach then has to follow, to elucidate specific patterns and enzymatic details. This thesis depicts how a gene encoding a membrane-anchored cellulase was isolated from Populus tremula x tremuloides Mich, how the corresponding protein was expressed in heterologous hosts, purified and characterized by substrate analysis using different techniques. The in vivo function and modularity of the membrane-anchored cellulase was also addressed using overexpression and complementation analysis in Arabidopsis thaliana. Among 9 genes found in the Populus EST database, encoding enzymes from glycosyl hydrolase family 9, two were expressed in the cambial tissue, and the membrane-anchored cellulase, PttCel9A1, was the most abundant transcript. PttCel9A1 was expressed in Pichia pastoris, and purified by affinity chromatography and ion exchange chromatography. The low yield of recombinant protein from shake flask experiments was improved by scaling up in the fermentor. PttCel9A1 was however highly heterogenous, both mannosylated and phosphorylated, which made the protein unsuitable for crystallization experiments and 3D X-ray structure determination. Instead, a homology model using a well-characterized, homologous bacterial enzyme was built. From the homology model, interesting point mutations in the active site cleft that would highlight the functional differences of the two proteins could be identified. The real-time cleavage patterns of cello-oligosaccharides by mutant bacterial enzymes, the wildtype bacterial enzyme and PttCel9A1 were studied by 1H NMR spectroscopy, and compared with results from HPAEC-PAD analysis. The inverting stereochemistry for the hydrolysis reaction of the membrane-anchored poplar cellulase was also determined by 1H NMR spectroscopy, and it was concluded that transglycosylation in vivo is not a possible scenario. The preferred in vitro polymeric substrates for PttCel9A1 were shown to be long, low-substituted cellulose derivatives, and the endo-1,4--glucanase activity was not extended to branched or mixed linkage substrates to detectable levels. This result indicates an in vivo function in the hydrolysis of “amorphous” regions of cellulose, either during polymerization or crystallization of cellulose. In addition, overexpressing PttCel9A1 in A. thaliana, demonstrated a correlation with decreased crystallinity of cellulose. The significance of the different putative modules of PttCel9A1 was investigated by the construction of hybrid proteins, that were introduced into a knock-out mutant of A. thaliana, and the potential complementation of the phenotype was examined. A type B plant cellulase catalytic domain could not substitute for a type A plant cellulase catalytic domain, although localization and interaction motifs were added to the N- and C-terminus. / QC 20100802
2

Mapeamento dos subsítios de α-amilase de Xanthomonas axonopodis pv citri envolvidos na interação com o substrato / Subsite mapping of Xanthomonas axonopodis pv citri α-amylase involved in substrate binding

Pinho, Jean Marcel Rodrigues 20 December 2004 (has links)
Mapeamento dos subsítios de α-amilase de Xanthomonas axonopodis pv. Citri envolvidos na interação com o substrato A família das enzimas α-amilases é um modelo experimental interessante para o estudo das interações entre os aminoácidos e seus ligantes, já que estas enzimas apresentam especificidade variável, são frequentemente alvos de estudos por mutagênese e há estruturas cristalinas disponíveis para alguns membros da família. A proposta deste trabalho foi o mapear subsítios da α-amilase de Xanthomonas axonopodis pv. citri (AXA) envolvidos na interação com substratos, através de comparações estruturais, mutagêneses sítio-dirigidas, análises de parâmetros cinéticos sobre amido e do padrão de clivagem sobre p-nitrofenil malto-oligossacarideos (PNPG7, PNPG5, PNPG4). Foi criado um modelo estrutural para AXA a partir da estrutura tridimensional da α-amilase de Alteromonas haloplanctis (Aghajari et al., 1998). O modelo de AXA foi sobreposto na estrutura da α-amilase pancreática de porco (Qian et al., 1994) e 11 resíduos foram selecionados e mutados para alanina. As α-amilases recombinantes mutantes e selvagem foram secretadas pela levedura Pichia pastoris GS115, apresentando uma massa molecular aparente de 45 kDa. Todos os mutantes analisados reduziram em maior ou menor grau a atividade catalítica da enzima sobre amido e p-nitrofenil maltooligossacarideos. Mutações dos resíduos H88, F136, D196, E223, D295 e N299, deletaram a atividade enzimática, indicando que suas cadeias laterais são essenciais para o desempenho catalítico da enzima. As análises cinéticas e estruturais sugerem fortemente que D196, E223 e D295 são os resíduos catalíticos. Substituições das cadeias laterais de C157, H200, G227, T230 e H294 reduziram a eficiência catalítica (kcat/Km) da α-amilase sobre o substrato amido para, respectivamente, 28%, 41%, 84%, 81% e 51%. As mutações em G227 e T230 foram menos importantes para a atividade da enzima e afinidade pelo amido, entretanto, estes resíduos mostraram-se importantes para a estabilização de complexos com substratos curtos (pNPG4). Os resultados indicam que o sítio ativo de AXA é formado por, no mínimo, seis subsítios. As interações dos anéis de glicose com os subsítios +2 e -2 são favorecidas em relação às interações nos subsítios -3 e +3, respectivamente, e a interação do anel de glicose no subsítio -3 é favorecida em relação à interação no subsítio +3. A enzima selvagem diva preferencialmente a terceira ligação glicosídica de p-nitrofenil maltooligossacarideos. Como produtos de hidrólise a enzima libera maltopentaose, maltotetraose, maltotriose, maltose e glicose. / The α-amylase family is an interesting group for structure/function relationship investigation, as this family exhibits a variable deavage patterm, several crystal structures are available, and its members were studied by mutagenesis. The aim of this study was the mapping of Xanthomonas axonopodis pv. Citri α-amylase (AXA) subsites involved in substrate binding, using structural comparison, site-directed mutagenesis and lcinetics analyses. A structural model for AXA was created from the three-dimensional structure of the α-amylase from Alteromonas haloplanctis (Aghajari et al., 1998). This model was superimposed on the structure ofthe pig pancreatic α-amylase, PPA (Qian et. al., 1994), and 11 residues were selected and changed to alanine. Wild type and mutant AXA were secreted by Pichia pastoris strain GS115 cells and showed apparent molecular mass of 45 kDa. All mutants have reduced α-amylase activity on starch and 4-nitrophenyl maltooligosaccharides (pNPG7, PNPG5 and PNPG4) at different levels. Mutation of residues H88, F136, D196, E223, D295 and N299 indicate their essential role by complete loss of activity. Kinetic and structural analyses strongly suggested that D196, E223 and D295 are the catalytic residues. The substitution of the side chain of C157, H200, G227, T230 and H294 reduced the catalytic efficiency (kcat/Km) of α-amylase on starch to respectively 28%, 41%, 84%, 81% and 51%. Although G227 and T230 were not much important for activity and binding on starch, these residues were important for stabilization of complexes with short substrates (PNPG4). The results indicate that AXA\'s active site is composed of at least six sugar binding subsites. The binding of the glucoses at subsites +2 and -2 are favored against binding at subsites -3 and +3, respectively. The binding of glucose at subsite -3 is favored against binding at subsite +3. The wild type enzyme primarily hydrolyzes the third glucosidic bond in PNPG7, PNPG5 and PNPG4 and the products of hydrolysis were maltopentaose, maltotetraose, maltotriose, maltose and glucose.
3

Mapeamento dos subsítios de α-amilase de Xanthomonas axonopodis pv citri envolvidos na interação com o substrato / Subsite mapping of Xanthomonas axonopodis pv citri α-amylase involved in substrate binding

Jean Marcel Rodrigues Pinho 20 December 2004 (has links)
Mapeamento dos subsítios de α-amilase de Xanthomonas axonopodis pv. Citri envolvidos na interação com o substrato A família das enzimas α-amilases é um modelo experimental interessante para o estudo das interações entre os aminoácidos e seus ligantes, já que estas enzimas apresentam especificidade variável, são frequentemente alvos de estudos por mutagênese e há estruturas cristalinas disponíveis para alguns membros da família. A proposta deste trabalho foi o mapear subsítios da α-amilase de Xanthomonas axonopodis pv. citri (AXA) envolvidos na interação com substratos, através de comparações estruturais, mutagêneses sítio-dirigidas, análises de parâmetros cinéticos sobre amido e do padrão de clivagem sobre p-nitrofenil malto-oligossacarideos (PNPG7, PNPG5, PNPG4). Foi criado um modelo estrutural para AXA a partir da estrutura tridimensional da α-amilase de Alteromonas haloplanctis (Aghajari et al., 1998). O modelo de AXA foi sobreposto na estrutura da α-amilase pancreática de porco (Qian et al., 1994) e 11 resíduos foram selecionados e mutados para alanina. As α-amilases recombinantes mutantes e selvagem foram secretadas pela levedura Pichia pastoris GS115, apresentando uma massa molecular aparente de 45 kDa. Todos os mutantes analisados reduziram em maior ou menor grau a atividade catalítica da enzima sobre amido e p-nitrofenil maltooligossacarideos. Mutações dos resíduos H88, F136, D196, E223, D295 e N299, deletaram a atividade enzimática, indicando que suas cadeias laterais são essenciais para o desempenho catalítico da enzima. As análises cinéticas e estruturais sugerem fortemente que D196, E223 e D295 são os resíduos catalíticos. Substituições das cadeias laterais de C157, H200, G227, T230 e H294 reduziram a eficiência catalítica (kcat/Km) da α-amilase sobre o substrato amido para, respectivamente, 28%, 41%, 84%, 81% e 51%. As mutações em G227 e T230 foram menos importantes para a atividade da enzima e afinidade pelo amido, entretanto, estes resíduos mostraram-se importantes para a estabilização de complexos com substratos curtos (pNPG4). Os resultados indicam que o sítio ativo de AXA é formado por, no mínimo, seis subsítios. As interações dos anéis de glicose com os subsítios +2 e -2 são favorecidas em relação às interações nos subsítios -3 e +3, respectivamente, e a interação do anel de glicose no subsítio -3 é favorecida em relação à interação no subsítio +3. A enzima selvagem diva preferencialmente a terceira ligação glicosídica de p-nitrofenil maltooligossacarideos. Como produtos de hidrólise a enzima libera maltopentaose, maltotetraose, maltotriose, maltose e glicose. / The α-amylase family is an interesting group for structure/function relationship investigation, as this family exhibits a variable deavage patterm, several crystal structures are available, and its members were studied by mutagenesis. The aim of this study was the mapping of Xanthomonas axonopodis pv. Citri α-amylase (AXA) subsites involved in substrate binding, using structural comparison, site-directed mutagenesis and lcinetics analyses. A structural model for AXA was created from the three-dimensional structure of the α-amylase from Alteromonas haloplanctis (Aghajari et al., 1998). This model was superimposed on the structure ofthe pig pancreatic α-amylase, PPA (Qian et. al., 1994), and 11 residues were selected and changed to alanine. Wild type and mutant AXA were secreted by Pichia pastoris strain GS115 cells and showed apparent molecular mass of 45 kDa. All mutants have reduced α-amylase activity on starch and 4-nitrophenyl maltooligosaccharides (pNPG7, PNPG5 and PNPG4) at different levels. Mutation of residues H88, F136, D196, E223, D295 and N299 indicate their essential role by complete loss of activity. Kinetic and structural analyses strongly suggested that D196, E223 and D295 are the catalytic residues. The substitution of the side chain of C157, H200, G227, T230 and H294 reduced the catalytic efficiency (kcat/Km) of α-amylase on starch to respectively 28%, 41%, 84%, 81% and 51%. Although G227 and T230 were not much important for activity and binding on starch, these residues were important for stabilization of complexes with short substrates (PNPG4). The results indicate that AXA\'s active site is composed of at least six sugar binding subsites. The binding of the glucoses at subsites +2 and -2 are favored against binding at subsites -3 and +3, respectively. The binding of glucose at subsite -3 is favored against binding at subsite +3. The wild type enzyme primarily hydrolyzes the third glucosidic bond in PNPG7, PNPG5 and PNPG4 and the products of hydrolysis were maltopentaose, maltotetraose, maltotriose, maltose and glucose.

Page generated in 0.0774 seconds