• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 51
  • 11
  • 5
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 79
  • 79
  • 45
  • 44
  • 24
  • 16
  • 11
  • 11
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Studies on Nucleic Acids in Relation to Protein Synthesis

Baguley, Bruce C. January 1966 (has links)
Several methods for the fractionation of transfer RNA have been investigated. These include countercurrent distribution, ion exchange chromatography, chemical methods utilizing the oxidation of transfer RNA with periodate, and hydrogen bonding methods. The effect of temperature on the ion exchange fractionation characteristics of yeast transfer RNA has been studied using the anion exchanger diethylaminoethyl-cellulose (DUE--cellulose).
42

Studies on Nucleic Acids in Relation to Protein Synthesis

Baguley, Bruce C. January 1966 (has links)
Several methods for the fractionation of transfer RNA have been investigated. These include countercurrent distribution, ion exchange chromatography, chemical methods utilizing the oxidation of transfer RNA with periodate, and hydrogen bonding methods. The effect of temperature on the ion exchange fractionation characteristics of yeast transfer RNA has been studied using the anion exchanger diethylaminoethyl-cellulose (DUE--cellulose).
43

The role of topoisomerase II in amsacrine resistance

Rattray, Sandra J.(Sandra Jean) January 1989 (has links)
Restricted Item. Print thesis available in the University of Auckland Library or available through Inter-Library Loan. 1. Antitumour agents from many different chemical classes including acridines, have been shown to induce topoisomerase II-associated DNA breaks both in cultured mammalian cells and in vitro in the presence of purified mammalian DNA topoisomerase II. However, mechanisms linking these protein-associated DNA breaks with drug cytotoxicity are poorly understood. Whether this type of DNA damage is responsible for drug cytotoxicty was investigated using a number of acridine derivatives belonging to the sane chemical class but with varying potency in vivo. The modulation of topoisomerase II-mediated DNA breaks in whole L1210 cells, isolated nuclei and nuclear extract systems correlated with drug-induced cytotoxicity, at least for the drugs belonging to the amsacrine lineage. In contrast, there was no direct relationship between the inhibition of topoisomerase II strand-passing activity and the cytotoxic action of topoisomerase II-specific anticancer drugs. It was concluded that drug-induced formation and stabilization of the topoisomerase II-DNA cleavable complex rather than inhibition of its formation or of strand-passing functions, is responsible for DNA strand breakage and cell death caused by antitumour acridines such as amsacrine. 2. Two tissue culture systems (CHO-AA8 cells or P815 cell cycle mutants) were used as models to study the involvement of topoisomerase II in the resistance of non-cycling cells to amsacrine. Plateau-phase CHO-AA8 cells with a GO/Gl DNA content are resistant, to amsacrine and contain fewer DNA breaks than log-phase cells after drug treatment. (Robbie et al., 1988). The observations of Robbie et al. (1988) were further investigated in this thesis. The phage P4 DNA unknotting activity in CHO-AA8 cell nuclear extracts decreased 2-fold when the cells entered plateau-phase, but there was no difference in the sensitivity of unknotting to amsacrine between log- and plateau-phase nuclear extracts. Furthermore, drug stimulation of protein-DNA complex formation was similar in whole cells, isolated nuclei and nuclear extracts from either log- or plateau-phase cells. However, stimulation of complex formation in cells, nuclei or nuclear extracts was approximately 4-fo1d lower in plateau-phase than in log-phase. These results suggested that drug-enzyme interaction was altered in plateau-phase and there was a good correlation between the proliferative state of cells, amsacrine sensitivity DNA breakage and topoisomerase II-DNA complex formation. The second system used to study the effect of amsacrine was the cold-sensitive (proliferating at 39.5°C; reversibly arrested in Gl-phase at 33°C) cell-cycle mutant 21-Fb of the murine mastocytoma cell line, P815- The sensitivity of arrested 21-FB cells to amsacrine decreased –less than two-fold in cell survival experiments when compared to proliferating cells. In contrast, DNA breakage and stimulation of protein-DNA complex formation in intact cells, lysed cells or isolated nuclei was reduced approximately 10-fold in amsacrine-treated arrested cells and DNA-topoisomerase II activity in arrested cells was only 5% of the activity in proliferating cells. Thus in contrast to the CHO-AA8 cell system, there was no correlation between cell survival and DNA damage or DNA topisomerase II activity in drug treated 21-Fb cells. The exact reasons for the differences in amsacrine sensitivity in growth arrested CHO and 21-Fb cells were not resolved. However, it was concluded that a complex relationship exists between amsacrine-induced DNA breakage, topoisomerase II-DNA complex formation, topoisomerase activity and drug cytotoxicity. Moreover, a very complex set of parameters can influence drug-induced topoisomerase II-mediated lesions and cytotoxicity in different cells or even a single type of cell under different growth conditions. 3. Extracts of K21 murine mastocytoma cells were found to contain a factor that, enhances formation of amsacrine-induced topoisomerase II-DNA complexes (PDC) when added to isolated K21 nuclei. The PDC enhancing activity was reduced in extracts from 2 or 6 h cycloheximide- or cordycepin-treated cells, implying that continuous protein synthesis is required to maintain the factor. Preliminary characterization showed that the factor was heat labile and proteinase-sensitive suggesting the factor was a labile protein which was distinct from the two known classes of topoisomerase. The protein factor was present in at least four other cell lines and was substantially reduced in cells induced into a G1 state by temperature arrest or serum deprivation, Human Jurkat cells selected for resistance to amsacrine and displaying cross-resistance to other topoisomerase II-targeted drugs also exhibited significantly reduced PDC enhancing activity. These results suggested a contributing role for the PDC enhancing factor in mediation of drug resistance. Fractionation of mouse mastocytoma cell cytoplasmic extracts by salt precipitation, DEAE-cellulose chromatography and SDS-PAGE resulted in a 3571-fold purification of the PDC enhancing activity. The PDC enhancing activity was shown to reside in a 70 kDa protein kinase with specificity for a casein kinase II substrate and sensitive to heparin and anti-casein kinase II antiserum. This appears to be the first direct evidence of a protein factor that modulates amsacrine induced topoisomerase II action possibly by phosphorylating topoisomerase II or proteins associated with topoisomerase II.
44

The role of topoisomerase II in amsacrine resistance

Rattray, Sandra J.(Sandra Jean) January 1989 (has links)
Restricted Item. Print thesis available in the University of Auckland Library or available through Inter-Library Loan. 1. Antitumour agents from many different chemical classes including acridines, have been shown to induce topoisomerase II-associated DNA breaks both in cultured mammalian cells and in vitro in the presence of purified mammalian DNA topoisomerase II. However, mechanisms linking these protein-associated DNA breaks with drug cytotoxicity are poorly understood. Whether this type of DNA damage is responsible for drug cytotoxicty was investigated using a number of acridine derivatives belonging to the sane chemical class but with varying potency in vivo. The modulation of topoisomerase II-mediated DNA breaks in whole L1210 cells, isolated nuclei and nuclear extract systems correlated with drug-induced cytotoxicity, at least for the drugs belonging to the amsacrine lineage. In contrast, there was no direct relationship between the inhibition of topoisomerase II strand-passing activity and the cytotoxic action of topoisomerase II-specific anticancer drugs. It was concluded that drug-induced formation and stabilization of the topoisomerase II-DNA cleavable complex rather than inhibition of its formation or of strand-passing functions, is responsible for DNA strand breakage and cell death caused by antitumour acridines such as amsacrine. 2. Two tissue culture systems (CHO-AA8 cells or P815 cell cycle mutants) were used as models to study the involvement of topoisomerase II in the resistance of non-cycling cells to amsacrine. Plateau-phase CHO-AA8 cells with a GO/Gl DNA content are resistant, to amsacrine and contain fewer DNA breaks than log-phase cells after drug treatment. (Robbie et al., 1988). The observations of Robbie et al. (1988) were further investigated in this thesis. The phage P4 DNA unknotting activity in CHO-AA8 cell nuclear extracts decreased 2-fold when the cells entered plateau-phase, but there was no difference in the sensitivity of unknotting to amsacrine between log- and plateau-phase nuclear extracts. Furthermore, drug stimulation of protein-DNA complex formation was similar in whole cells, isolated nuclei and nuclear extracts from either log- or plateau-phase cells. However, stimulation of complex formation in cells, nuclei or nuclear extracts was approximately 4-fo1d lower in plateau-phase than in log-phase. These results suggested that drug-enzyme interaction was altered in plateau-phase and there was a good correlation between the proliferative state of cells, amsacrine sensitivity DNA breakage and topoisomerase II-DNA complex formation. The second system used to study the effect of amsacrine was the cold-sensitive (proliferating at 39.5°C; reversibly arrested in Gl-phase at 33°C) cell-cycle mutant 21-Fb of the murine mastocytoma cell line, P815- The sensitivity of arrested 21-FB cells to amsacrine decreased –less than two-fold in cell survival experiments when compared to proliferating cells. In contrast, DNA breakage and stimulation of protein-DNA complex formation in intact cells, lysed cells or isolated nuclei was reduced approximately 10-fold in amsacrine-treated arrested cells and DNA-topoisomerase II activity in arrested cells was only 5% of the activity in proliferating cells. Thus in contrast to the CHO-AA8 cell system, there was no correlation between cell survival and DNA damage or DNA topisomerase II activity in drug treated 21-Fb cells. The exact reasons for the differences in amsacrine sensitivity in growth arrested CHO and 21-Fb cells were not resolved. However, it was concluded that a complex relationship exists between amsacrine-induced DNA breakage, topoisomerase II-DNA complex formation, topoisomerase activity and drug cytotoxicity. Moreover, a very complex set of parameters can influence drug-induced topoisomerase II-mediated lesions and cytotoxicity in different cells or even a single type of cell under different growth conditions. 3. Extracts of K21 murine mastocytoma cells were found to contain a factor that, enhances formation of amsacrine-induced topoisomerase II-DNA complexes (PDC) when added to isolated K21 nuclei. The PDC enhancing activity was reduced in extracts from 2 or 6 h cycloheximide- or cordycepin-treated cells, implying that continuous protein synthesis is required to maintain the factor. Preliminary characterization showed that the factor was heat labile and proteinase-sensitive suggesting the factor was a labile protein which was distinct from the two known classes of topoisomerase. The protein factor was present in at least four other cell lines and was substantially reduced in cells induced into a G1 state by temperature arrest or serum deprivation, Human Jurkat cells selected for resistance to amsacrine and displaying cross-resistance to other topoisomerase II-targeted drugs also exhibited significantly reduced PDC enhancing activity. These results suggested a contributing role for the PDC enhancing factor in mediation of drug resistance. Fractionation of mouse mastocytoma cell cytoplasmic extracts by salt precipitation, DEAE-cellulose chromatography and SDS-PAGE resulted in a 3571-fold purification of the PDC enhancing activity. The PDC enhancing activity was shown to reside in a 70 kDa protein kinase with specificity for a casein kinase II substrate and sensitive to heparin and anti-casein kinase II antiserum. This appears to be the first direct evidence of a protein factor that modulates amsacrine induced topoisomerase II action possibly by phosphorylating topoisomerase II or proteins associated with topoisomerase II.
45

Studies on Nucleic Acids in Relation to Protein Synthesis

Baguley, Bruce C. January 1966 (has links)
Several methods for the fractionation of transfer RNA have been investigated. These include countercurrent distribution, ion exchange chromatography, chemical methods utilizing the oxidation of transfer RNA with periodate, and hydrogen bonding methods. The effect of temperature on the ion exchange fractionation characteristics of yeast transfer RNA has been studied using the anion exchanger diethylaminoethyl-cellulose (DUE--cellulose).
46

The role of topoisomerase II in amsacrine resistance

Rattray, Sandra J.(Sandra Jean) January 1989 (has links)
Restricted Item. Print thesis available in the University of Auckland Library or available through Inter-Library Loan. 1. Antitumour agents from many different chemical classes including acridines, have been shown to induce topoisomerase II-associated DNA breaks both in cultured mammalian cells and in vitro in the presence of purified mammalian DNA topoisomerase II. However, mechanisms linking these protein-associated DNA breaks with drug cytotoxicity are poorly understood. Whether this type of DNA damage is responsible for drug cytotoxicty was investigated using a number of acridine derivatives belonging to the sane chemical class but with varying potency in vivo. The modulation of topoisomerase II-mediated DNA breaks in whole L1210 cells, isolated nuclei and nuclear extract systems correlated with drug-induced cytotoxicity, at least for the drugs belonging to the amsacrine lineage. In contrast, there was no direct relationship between the inhibition of topoisomerase II strand-passing activity and the cytotoxic action of topoisomerase II-specific anticancer drugs. It was concluded that drug-induced formation and stabilization of the topoisomerase II-DNA cleavable complex rather than inhibition of its formation or of strand-passing functions, is responsible for DNA strand breakage and cell death caused by antitumour acridines such as amsacrine. 2. Two tissue culture systems (CHO-AA8 cells or P815 cell cycle mutants) were used as models to study the involvement of topoisomerase II in the resistance of non-cycling cells to amsacrine. Plateau-phase CHO-AA8 cells with a GO/Gl DNA content are resistant, to amsacrine and contain fewer DNA breaks than log-phase cells after drug treatment. (Robbie et al., 1988). The observations of Robbie et al. (1988) were further investigated in this thesis. The phage P4 DNA unknotting activity in CHO-AA8 cell nuclear extracts decreased 2-fold when the cells entered plateau-phase, but there was no difference in the sensitivity of unknotting to amsacrine between log- and plateau-phase nuclear extracts. Furthermore, drug stimulation of protein-DNA complex formation was similar in whole cells, isolated nuclei and nuclear extracts from either log- or plateau-phase cells. However, stimulation of complex formation in cells, nuclei or nuclear extracts was approximately 4-fo1d lower in plateau-phase than in log-phase. These results suggested that drug-enzyme interaction was altered in plateau-phase and there was a good correlation between the proliferative state of cells, amsacrine sensitivity DNA breakage and topoisomerase II-DNA complex formation. The second system used to study the effect of amsacrine was the cold-sensitive (proliferating at 39.5°C; reversibly arrested in Gl-phase at 33°C) cell-cycle mutant 21-Fb of the murine mastocytoma cell line, P815- The sensitivity of arrested 21-FB cells to amsacrine decreased –less than two-fold in cell survival experiments when compared to proliferating cells. In contrast, DNA breakage and stimulation of protein-DNA complex formation in intact cells, lysed cells or isolated nuclei was reduced approximately 10-fold in amsacrine-treated arrested cells and DNA-topoisomerase II activity in arrested cells was only 5% of the activity in proliferating cells. Thus in contrast to the CHO-AA8 cell system, there was no correlation between cell survival and DNA damage or DNA topisomerase II activity in drug treated 21-Fb cells. The exact reasons for the differences in amsacrine sensitivity in growth arrested CHO and 21-Fb cells were not resolved. However, it was concluded that a complex relationship exists between amsacrine-induced DNA breakage, topoisomerase II-DNA complex formation, topoisomerase activity and drug cytotoxicity. Moreover, a very complex set of parameters can influence drug-induced topoisomerase II-mediated lesions and cytotoxicity in different cells or even a single type of cell under different growth conditions. 3. Extracts of K21 murine mastocytoma cells were found to contain a factor that, enhances formation of amsacrine-induced topoisomerase II-DNA complexes (PDC) when added to isolated K21 nuclei. The PDC enhancing activity was reduced in extracts from 2 or 6 h cycloheximide- or cordycepin-treated cells, implying that continuous protein synthesis is required to maintain the factor. Preliminary characterization showed that the factor was heat labile and proteinase-sensitive suggesting the factor was a labile protein which was distinct from the two known classes of topoisomerase. The protein factor was present in at least four other cell lines and was substantially reduced in cells induced into a G1 state by temperature arrest or serum deprivation, Human Jurkat cells selected for resistance to amsacrine and displaying cross-resistance to other topoisomerase II-targeted drugs also exhibited significantly reduced PDC enhancing activity. These results suggested a contributing role for the PDC enhancing factor in mediation of drug resistance. Fractionation of mouse mastocytoma cell cytoplasmic extracts by salt precipitation, DEAE-cellulose chromatography and SDS-PAGE resulted in a 3571-fold purification of the PDC enhancing activity. The PDC enhancing activity was shown to reside in a 70 kDa protein kinase with specificity for a casein kinase II substrate and sensitive to heparin and anti-casein kinase II antiserum. This appears to be the first direct evidence of a protein factor that modulates amsacrine induced topoisomerase II action possibly by phosphorylating topoisomerase II or proteins associated with topoisomerase II.
47

Studies on Nucleic Acids in Relation to Protein Synthesis

Baguley, Bruce C. January 1966 (has links)
Several methods for the fractionation of transfer RNA have been investigated. These include countercurrent distribution, ion exchange chromatography, chemical methods utilizing the oxidation of transfer RNA with periodate, and hydrogen bonding methods. The effect of temperature on the ion exchange fractionation characteristics of yeast transfer RNA has been studied using the anion exchanger diethylaminoethyl-cellulose (DUE--cellulose).
48

The role of topoisomerase II in amsacrine resistance

Rattray, Sandra J.(Sandra Jean) January 1989 (has links)
Restricted Item. Print thesis available in the University of Auckland Library or available through Inter-Library Loan. 1. Antitumour agents from many different chemical classes including acridines, have been shown to induce topoisomerase II-associated DNA breaks both in cultured mammalian cells and in vitro in the presence of purified mammalian DNA topoisomerase II. However, mechanisms linking these protein-associated DNA breaks with drug cytotoxicity are poorly understood. Whether this type of DNA damage is responsible for drug cytotoxicty was investigated using a number of acridine derivatives belonging to the sane chemical class but with varying potency in vivo. The modulation of topoisomerase II-mediated DNA breaks in whole L1210 cells, isolated nuclei and nuclear extract systems correlated with drug-induced cytotoxicity, at least for the drugs belonging to the amsacrine lineage. In contrast, there was no direct relationship between the inhibition of topoisomerase II strand-passing activity and the cytotoxic action of topoisomerase II-specific anticancer drugs. It was concluded that drug-induced formation and stabilization of the topoisomerase II-DNA cleavable complex rather than inhibition of its formation or of strand-passing functions, is responsible for DNA strand breakage and cell death caused by antitumour acridines such as amsacrine. 2. Two tissue culture systems (CHO-AA8 cells or P815 cell cycle mutants) were used as models to study the involvement of topoisomerase II in the resistance of non-cycling cells to amsacrine. Plateau-phase CHO-AA8 cells with a GO/Gl DNA content are resistant, to amsacrine and contain fewer DNA breaks than log-phase cells after drug treatment. (Robbie et al., 1988). The observations of Robbie et al. (1988) were further investigated in this thesis. The phage P4 DNA unknotting activity in CHO-AA8 cell nuclear extracts decreased 2-fold when the cells entered plateau-phase, but there was no difference in the sensitivity of unknotting to amsacrine between log- and plateau-phase nuclear extracts. Furthermore, drug stimulation of protein-DNA complex formation was similar in whole cells, isolated nuclei and nuclear extracts from either log- or plateau-phase cells. However, stimulation of complex formation in cells, nuclei or nuclear extracts was approximately 4-fo1d lower in plateau-phase than in log-phase. These results suggested that drug-enzyme interaction was altered in plateau-phase and there was a good correlation between the proliferative state of cells, amsacrine sensitivity DNA breakage and topoisomerase II-DNA complex formation. The second system used to study the effect of amsacrine was the cold-sensitive (proliferating at 39.5°C; reversibly arrested in Gl-phase at 33°C) cell-cycle mutant 21-Fb of the murine mastocytoma cell line, P815- The sensitivity of arrested 21-FB cells to amsacrine decreased –less than two-fold in cell survival experiments when compared to proliferating cells. In contrast, DNA breakage and stimulation of protein-DNA complex formation in intact cells, lysed cells or isolated nuclei was reduced approximately 10-fold in amsacrine-treated arrested cells and DNA-topoisomerase II activity in arrested cells was only 5% of the activity in proliferating cells. Thus in contrast to the CHO-AA8 cell system, there was no correlation between cell survival and DNA damage or DNA topisomerase II activity in drug treated 21-Fb cells. The exact reasons for the differences in amsacrine sensitivity in growth arrested CHO and 21-Fb cells were not resolved. However, it was concluded that a complex relationship exists between amsacrine-induced DNA breakage, topoisomerase II-DNA complex formation, topoisomerase activity and drug cytotoxicity. Moreover, a very complex set of parameters can influence drug-induced topoisomerase II-mediated lesions and cytotoxicity in different cells or even a single type of cell under different growth conditions. 3. Extracts of K21 murine mastocytoma cells were found to contain a factor that, enhances formation of amsacrine-induced topoisomerase II-DNA complexes (PDC) when added to isolated K21 nuclei. The PDC enhancing activity was reduced in extracts from 2 or 6 h cycloheximide- or cordycepin-treated cells, implying that continuous protein synthesis is required to maintain the factor. Preliminary characterization showed that the factor was heat labile and proteinase-sensitive suggesting the factor was a labile protein which was distinct from the two known classes of topoisomerase. The protein factor was present in at least four other cell lines and was substantially reduced in cells induced into a G1 state by temperature arrest or serum deprivation, Human Jurkat cells selected for resistance to amsacrine and displaying cross-resistance to other topoisomerase II-targeted drugs also exhibited significantly reduced PDC enhancing activity. These results suggested a contributing role for the PDC enhancing factor in mediation of drug resistance. Fractionation of mouse mastocytoma cell cytoplasmic extracts by salt precipitation, DEAE-cellulose chromatography and SDS-PAGE resulted in a 3571-fold purification of the PDC enhancing activity. The PDC enhancing activity was shown to reside in a 70 kDa protein kinase with specificity for a casein kinase II substrate and sensitive to heparin and anti-casein kinase II antiserum. This appears to be the first direct evidence of a protein factor that modulates amsacrine induced topoisomerase II action possibly by phosphorylating topoisomerase II or proteins associated with topoisomerase II.
49

The Use of Laboratory Analyses in Sweden : Quality and Cost-Effectiveness in Test Utilization

Mindemark, Mirja January 2010 (has links)
Laboratory analyses, essential in screening, diagnosis, treatment, and monitoring of disease, are indispensable in health care, but appropriate utilization is intricate. The overall aim of this thesis was to study the use of laboratory tests in Sweden with the objective to evaluate and optimize test utilization. Considerable inter-county variations in test utilization in primary health care in Sweden were found; variations likely influenced by local traditions and habits of test ordering leading to over- as well as underutilization. Optimized test utilization was demonstrated to convey improved quality and substantial cost savings. It was further established that continuing medical education is a suitable means of optimizing test utilization, and consequently enhancing quality and cost-efficiency, as such education was demonstrated to achieve long-lasting improvements in the test ordering habits of primary health care physicians. Laboratory tests are closely associated with other, greater, health care costs, but their indirect effects on other areas of medicine are rarely evaluated or measured in monetary terms. In an illustrative example of the effects that optimal test utilization may have on associated health care costs it was demonstrated that F-calprotectin, a fecal marker of intestinal inflammation, has the potential to substantially reduce the number of invasive investigations necessary in, and the costs associated with, the diagnosis of Inflammatory Bowel Disease. Information on trends in test utilization is essential to optimal financial management of laboratories. A longitudinal evaluation revealed that test utilization had increased by 70% in 6 years, and even though the selection of tests more than doubled, a very small number of tests represented a stable, and disproportionally large, share of the total number of tests ordered. The study defines trends and thus has potential predictive values. In summary, appropriate utilization of laboratory analyses has both clinical and economical benefits on all levels of health care.
50

Microalbuminuria, blood pressure and cardiovascular risk factors in elderly males

Florvall, Gösta, Basu, Samar, Helmersson, Johanna, Larsson, Anders January 2005 (has links)
<p>Objective - To correlate blood pressure and inflammatory markers with urine albumin analysed with a point-of-care testing (POCT) instrument, nephelometric determination of albumin and creatinine related urine albumin in elderly males.</p><p>Methods and Results - The study population consisted of 103 diabetic and 603 nondiabetic males (age 77 years) in a cross-sectional study in central Sweden. We analyzed urine albumin with a HemoCue® Urine Albumin POCT instrument and a ProSpec® nephelometer and creatinine related urine albumin. There were strong correlation between both systolic and diastolic blood pressure and all three urine albumin methods (p<0.0001). There were also significant correlations between the different urine albumin measurements and SAA, hsCRP and IL-6.</p><p>Conclusions - Hypertension has a strong impact on hyperfiltration in diabetic and nondiabetic elderly males.</p>

Page generated in 0.1099 seconds