Spelling suggestions: "subject:"cnt"" "subject:"cnts""
1 |
Image Classification, Deep Learning and Convolutional Neural Networks : A Comparative Study of Machine Learning FrameworksAirola, Rasmus, Hager, Kristoffer January 2017 (has links)
The use of machine learning and specifically neural networks is a growing trend in software development, and has grown immensely in the last couple of years in the light of an increasing need to handle big data and large information flows. Machine learning has a broad area of application, such as human-computer interaction, predicting stock prices, real-time translation, and self driving vehicles. Large companies such as Microsoft and Google have already implemented machine learning in some of their commercial products such as their search engines, and their intelligent personal assistants Cortana and Google Assistant. The main goal of this project was to evaluate the two deep learning frameworks Google TensorFlow and Microsoft CNTK, primarily based on their performance in the training time of neural networks. We chose to use the third-party API Keras instead of TensorFlow's own API when working with TensorFlow. CNTK was found to perform better in regards of training time compared to TensorFlow with Keras as frontend. Even though CNTK performed better on the benchmarking tests, we found Keras with TensorFlow as backend to be much easier and more intuitive to work with. In addition, CNTKs underlying implementation of the machine learning algorithms and functions differ from that of the literature and of other frameworks. Therefore, if we had to choose a framework to continue working in, we would choose Keras with TensorFlow as backend, even though the performance is less compared to CNTK.
|
2 |
Rozpoznání textu s využitím neuronových sítí / Text recognition with artificial neural networksPeřinová, Barbora January 2018 (has links)
This master’s thesis deals with optical character recognition. The first part describes the basic types of optical character recognition tasks and divides algorithm into individual phases. For each phase the most commonly used methods are described in the next part. Within the character recognition phase the problematics of artificial neural networks and their usage in given phase is explained, specifically multilayer perceptron and convolutional neural networks. The second part deals with requirements definition for specific application to be used as feedback for robotic system. Convolution neural networks and CNTK library for deep learning using algorithm implementation in .NET is introduced. Finally, the test results of the individual phases of the proposed solution and the comparison with the open source Tesseract engine are discussed.
|
3 |
Zobrazení a analýza aktivit neuronové sítě ve skrytých vrstvách / Activity of Neural Network in Hidden Layers - Visualisation and AnalysisFábry, Marko January 2016 (has links)
Goal of this work was to create system capable of visualisation of activation function values, which were produced by neurons placed in hidden layers of neural networks used for speech recognition. In this work are also described experiments comparing methods for visualisation, visualisations of neural networks with different architectures and neural networks trained with different types of input data. Visualisation system implemented in this work is based on previous work of Mr. Khe Chai Sim and extended with new methods of data normalization. Kaldi toolkit was used for neural network training data preparation. CNTK framework was used for neural network training. Core of this work - the visualisation system was implemented in scripting language Python.
|
Page generated in 0.0324 seconds