101 |
In-situ Transmission Electron Microscopy for Understanding Heterogenous Electrocatalytic CO2 ReductionAbdellah, Ahmed January 2023 (has links)
This thesis delivers an in-depth investigation into electrochemical carbon dioxide reduction (CO2R), a process with the potential to convert CO2 gas into value-added chemicals and fuels. However, the efficiency and operational durability of current CO2 reduction processes are limited by catalytic performance. To address this, the thesis focuses on gaining a deep understanding of the transformations that CO2R electrocatalysts undergo under realistic conditions, such as morphological, phase structure, and compositional changes. These insights inform the design of next-generation materials by identifying performance descriptors and degradation patterns. A key aspect of this thesis is the development and application of in-situ liquid phase transmission electron microscopy (LP-TEM), an advanced platform that directly correlates nanoscale changes in catalyst materials under the influence of electrode potentials in CO2R reactive environments. Despite its potential, the use of in-situ LP-TEM presents a range of challenges, which this thesis addresses alongside exploring potential advancements for enhancing its accuracy and applicability. With the evolution of nanofabricated liquid cells, dynamic nanoparticle tracking, and high-resolution imaging in a liquid medium, this technology can more accurately mimic realistic exposure conditions. Cumulatively, this thesis systematically navigates the technical hurdles, advancements, and future prospects of in-situ LP-TEM in the context of electrochemical CO2R. The findings not only advance our understanding of the in-situ LP-TEM technical process but also guide new researchers in the field of in-situ TEM of electrocatalyst materials, aiding in the optimization of catalyst design, and paving the way for more sustainable and economically competitive CO2R technologies.
The application of in-situ LP-TEM extends to the examination of two specific catalysts: Palladium (Pd) and a bi-metallic alloy of Copper (Cu) and Silver (Ag). By employing in-situ LP-TEM and selected area diffraction (SAD) measurements, we trace the morphological and phase structure transformations of the Pd catalyst under CO2R conditions. Interestingly, our findings indicate that alterations in reaction energetics, rather than morphological or phase structure changes, chiefly govern catalyst selectivity. This provides invaluable insights for designing more efficient catalysts.
Further, we observe the morphological transformation of a metallic copper catalyst structure into a Cu-Ag bimetallic alloy during a galvanic replacement method. We then investigate the stability of both catalyst structures under operational CO2R conditions. Our results reveal that the metallic Cu structure undergoes significant morphological deformation during CO2R, leading to migration, detachment, and recrystallization of the catalyst surface. Contrarily, the Cu-Ag bimetallic alloy demonstrates notable thermodynamic stability under a similar applied potential. / Thesis / Candidate in Philosophy / This PhD thesis focuses on the development and implementation of cutting-edge technologies to address the climate change implications of CO2 emissions - a potent greenhouse gas. CO2 molecules could be electrochemically converted into various chemical feedstock and fuels. This process involves the development of efficient catalyst designs that can reduce CO2 gas at high conversion rates. Acquiring mechanistic insights on the behavior of the developed catalysts under reaction conditions would significantly assist on producing performance descriptors for catalyst design in CO2 conversion approach. Among a range of different advanced techniques, in-situ liquid phase transmission electron microscopy (LP-TEM) technology is selected for this study. This technique is capable of correlating dynamic nanoscale compositional and morphological changes with the electrochemical response of the catalysts. The primary focus of the thesis is on developing and implementing in-situ LP-TEM techniques to achieve electrochemical CO2 conditions while tracking particle morphology and phase structures as functions of electrochemical potential and time. Furthermore, the thesis investigates the performance of different catalyst designs under CO2 reduction (CO2R) operational conditions, which includes palladium (Pd) nanoparticles and copper–silver (Cu–Ag) bimetallic alloys. On a fundamental level, these studies provide a detailed understanding of the phase transformation and structural changes of these catalysts during CO2R that contributes valuable knowledge to the field and can be used to design next-generation CO2R catalysts.
|
102 |
Material Outgassing of Thermoplastics for Rocket Payload ApplicationLee, Jonathan Michael 03 May 2019 (has links)
Since the dawn of space exploration, material outgassing has been a major concern when developing a spacecraft. This has not only led to the creation of clean-rooms, but also to the development of various testing methods and standards used to understand the outgassing characteristics of any given material. In industry, low-outgassing materials are used to prevent contamination of electronics and camera lenses, because outgassed contaminates can lead to electronic failure and blurry images. The objective of this study is to develop a gas sensing sensor data acquisition system comprised of inexpensive commercial off-the-shelf components capable of detecting acceleration, atmospheric characteristics, and gas concentrations. Ground tests have been conducted to determine baseline characteristics of the components and develop an understanding of the CO2, CO and NO2 sensors’ ability to detect outgassing from PLA and ABS. Significant CO2 outgassing from PLA and ABS was observed, while CO outgassing was highly temperature dependent.
|
103 |
Formation Damage due to CO2 Sequestration in Saline AquifersMohamed, Ibrahim Mohamed 1984- 14 March 2013 (has links)
Carbon dioxide (CO2) sequestration is defined as the removal of gas that would be emitted into the atmosphere and its subsequent storage in a safe, sound place. CO2 sequestration in underground formations is currently being considered to reduce the amount of CO2 emitted into the atmosphere. However, a better understanding of the chemical and physical interactions between CO2, water, and formation rock is necessary before sequestration. These interactions can be evaluated by the change in mineral content in the water before and after injection, or from the change in well injectivity during CO2 injection. It may affect the permeability positively due to rock dissolution, or negatively due to precipitation.
Several physical and chemical processes cover the CO2 injection operations; multiphase flow in porous media is represented by the flow of the brine and CO2, solute transportation is represented by CO2 dissolution in the brine forming weak carbonic acid, dissolution-deposition kinetics can be seen in the rock dissolution by the carbonic acid and the deposition of the reaction products, hydrodynamic instabilities due to displacement of less viscous brine with more viscous CO2 (viscous fingering), capillary effects and upward movement of CO2 due to gravity effect.
The objective of the proposed work is to correlate the formation damage to the other variables, i.e. pressure, temperature, formation rock type, rock porosity, water composition, sulfates concentration in the water, CO2 volume injected, water volume injected, CO2 to water volumetric ratio, CO2 injection rate, and water injection rate.
In order to achieve the proposed objective, lab experiments will be conducted on different rock types (carbonates, limestone and dolomite, and sandstone) under pressure and temperature that simulate the field conditions. CO2 will be used at the supercritical phase and different CO2-water-rock chemical interactions will be addressed. Quantitative analysis of the experimental results using a geochemical simulator (CMG-GEM) will also be performed.
The results showed that for carbonate cores, maintaining the CO2/brine volumetric ratio above 1.0 reduced bicarbonate formation in the formation brine and helped in minimizing precipitation of calcium carbonate. Additionally, increasing cycle volume in WAG injection reduced the damage introduced to the core. Sulfate precipitation during CO2 sequestration was primarily controlled by temperature. For formation brine with high total dissolved solids (TDS), calcium sulfate precipitation occurs, even at a low sulfate concentration.
For dolomite rock, temperature, injection flow rate, and injection scheme don't have a clear impact on the core permeability, the main factor that affects the change in core permeability is the initial core permeability.
Sandstone cores showed significant damage; between 35% and 55% loss in core permeability was observed after CO2 injection. For shorter WAG injection the damage was higher; decreasing the brine volume injected per cycle, decreased the damage. At higher temperatures, 200 and 250 degrees F, more damage was noted than at 70 degrees F.
|
104 |
Chemical Alteration Of Oil Well Cement With Basalt Additive During Carbon Storage ApplicationMokhtari Jadid, Kahila 01 December 2011 (has links) (PDF)
Capturing and storing carbon dioxide (CO2) underground for thousands of years is one way to reduce atmospheric greenhouse gases, often associated with global warming. Leakage of CO2 through wells is one of the major concerns when storing CO2 in depleted oil and gas reservoirs. CO2-injection candidates could be new wells, or old wells that are active, closed or abandoned.
To prevent the leakage, the possible leakage paths and the mechanisms triggering these paths must be examined and identified. It is known that the leakage paths can occur due to CO2-rock interaction and CO2-water-cement interaction.
Interaction between well cement and carbon dioxide has attracted much renewed interest because of its implication in geological storage of carbon dioxide. The diffusion of CO2-water through well cement is a long-term phenomenon which can take many thousand years. Partial pressure, porosity, permeability, cement type, moisture content and temperature are the factors that affect the carbonation of well cement. The objective of this research is to investigate the chemical reactions of the dissolved CO2 in the synthetic formation water with the plugs of well cement. Cement specimens were left in contact with CO2 saturated brine at 1100 psi and 65
|
105 |
Nanostructured Ru/TiO2 catalysts for CO2 methanation / Catalyseurs Ru/TiO2 Nanostructurés pour la Methanation du CO2Kim, Ara 11 January 2016 (has links)
L’hydrogénation du CO2 par voie catalytique hétérogène représente une stratégie pertinente pour atténuer les émissions. Cette thèse a pour but de contribuer à la compréhension des facteurs physico-chimiques qui déterminent l’activité de catalyseurs Ru/TiO2 en conditions douces (= 200 °C, 1 atm). Des nanoparticules de RuO2 de 2 nm sont utilisées comme précurseurs de la phase active de Ru métallique. Ces nanoparticules calibrées sont combinées avec plusieurs supports de TiO2 présentant diverses cristallinités, textures, stabilité et compositions, dans le but de comprendre les paramètres qui dictent l’activité des catalyseurs Ru/TiO2. Les interactions spécifiques entre le support de TiO2 et les nanoparticules de RuO2 sont mises en évidence via différentes techniques avancées incluant la tomographie et la microscopie électronique en transmission environnementale à pression atmosphérique. Il apparait que le paramètre clé conférant une activité catalytique élevée est la stabilisation épitaxiale de RuO2 sur le TiO2 rutile lors de l’étape d’activation qui précède la réduction vers la forme Ru métallique. / The hydrogenation of CO2 performed through heterogeneous catalysis is a pertinent strategy for mitigating CO2 emissions. This thesis aims to contribute to the understanding of the physico-chemical factors related to the catalytic performance of Ru/TiO2 catalysts at mild conditions (= 200 °C, 1 atm). Pre-synthesized 2 nm-RuO2 nanoparticles (NPs) are used to serve as precursors for active metallic Ru. These calibrated NPs are coupled with various tailor made TiO2 supports with different crystallinity, textural properties, stability and composition to understand parameters that dictate the activity of Ru/TiO2 catalysts. The specific RuO2-TiO2 interactions and RuO2 NPs migration phenomenon are demonstrated using various techniques including the state-of-the-art tomography and environmental transmission electron microscopy at atmospheric pressure. The important parameter for the better catalytic performance is found to be the epitaxial stabilization of RuO2 on rutile TiO2 prior to the formation of active Ru phase.
|
106 |
Mesoporous Organosilicas for CO2 Capture and Utilization: Reaction Insight and Material DevelopmentKolle, Joel Motaka 06 May 2020 (has links)
As mankind attempts to halt climate change and global warming, large-scale carbon dioxide (CO2) capture, utilization and storage (CCUS) technologies are viewed as an indispensable approach to curb CO2 emission. This thesis focused on better understanding CO2-amine interactions during adsorption, while developing in parallel covalently immobilized polyethylenimine (PEI) adsorbents for CO2 adsorption. In addition, catalyst reusability issues reported in the synthesis of cyclic carbonates (CCs) from CO2 and epoxides using metal-free supported immobilized quaternary ammonium salts are addressed, while developing new organosilicas for the synthesis of CCs.
The reaction between CO2 and amine was investigated at the gas-solid interface in an attempt to provide a unified CO2-amine interaction both in adsorption and absorption. A combination of density functional theory calculations and experimental data (FTIR and 13C NMR) showed that the formation of the zwitterion intermediate often reported in the literature is highly unlikely, instead a six-atom centered zwitterion mechanism involving the “assisting” effect of water, amine or other functional groups was found to be more feasible due to its lower activation energy. Moreover, evidence was provided to suggest that under humid conditions, bicarbonate and carbonate are formed from the reaction between water and CO2, and not the widely reported carbamate hydrolysis.
With a goal of minimizing the leaching of amines on PEI-impregnated adsorbents, PEI was covalently immobilized on mesoporous aluminosilica using 3-glycidoxypropyltrimethoxysilane or 3-triethoxysilylpropyl isocyanate as linkers. The resultant materials were found to be more resistant to leaching (in ethanol) and degradation (air at 100 oC) compared to their impregnated counterparts. Further enhancement in oxidation stability was achieved by covalently grafting epoxide-functionalized PEI onto mesoporous aluminosilica.
CO2 uptake over amine-containing adsorbents is widely reported to be enhanced in the presence of moisture. However, the same cannot be said for other adsorbents, such as, carbonaceous and zeolite-based materials, and most MOFs. In a soon to be submitted review manuscript, a comprehensive analysis on the role of water on CO2 uptake (equilibrium and kinetics), material structure and regeneration over a wide range of adsorbents is presented.
As for CO2-epoxides fixation to cyclic carbonates, a quaternary ammonium salt supported on SBA-15 was used to investigate the observed literature trend between product yield and substrate type with catalyst reuse. Under mild reaction conditions (1.0 MPa CO2, 100 oC and 4 h), 1,2-butylene carbonate was obtained in high yields (> 95%) over 5 cycles as the substrate is easy to activate and the product can be completely removed from the catalyst surface due to its low boiling point. Nonetheless, using styrene oxide led to decrease in yield over reuse cycles, mainly because styrene carbonate crystals were trapped on the catalysts surface (13C MAS NMR and TGA data), thereby blocking access to active sites. By extensively washing all spent catalysts in acetone and using chromatographic grade SiO2 as support material, styrene carbonate was obtained in very good yield (> 93%) over five cycles.
Finally, novel quaternary ammonium iodide-based organosilicas, grouped into disordered, ordered and periodic mesoporous organosilicas, were prepared and tested for the cycloaddition of CO2 to epoxide to yield cyclic carbonates. Under mild reaction conditions (0.5 MPa CO2, 50 oC and 10 – 15 h) catalysts with the ordered mesoporous organosilicas structure were found to be more active owing to their larger surface area and pore volume, enhancing the accessibility of active sites by epoxides.
|
107 |
Modelling and Simulation of Carbon Dioxide Transportation in Pipelines: Effects of ImpuritiesPeletiri, Suoton P. January 2020 (has links)
Carbon dioxide capture, transportation, and storage has been identified as the
most promising way to reduce anthropogenic carbon dioxide (CO2) released into
the atmosphere. Efforts made to achieve this purpose include the Paris (Climate)
Accord. This agreement seeks to encourage countries to take the issue of rising
global temperatures seriously. With nearly all countries signing this agreement,
many CCTS projects are expected. Pipelines are employed in the transportation
of CO2. CO2 fluids contain impurities that affect the fluid properties and flow
dynamics, but pipelines are mostly designed assuming that the CO2 fluid is pure.
CO2 pipeline fluids contain at least 90 % CO2 with the balance made up of
impurities. The impurities include nitrogen, methane, oxygen, hydrogen, sulphur
dioxide, hydrogen sulphide, carbon monoxide, ammonia, argon, etc.
The effects of the impurities are studied using simulation software; Aspen
HYSYS, gPROMS and HydraFlash. The results show that all impurities impacted
negatively on transportation. At equal concentrations, hydrogen had the greatest
effect on fluid properties and hydrogen sulphide the least impact. At the specified
allowable concentration, nitrogen had the worst effect on pressure loss (32.1 %) in horizontal pipeline, density, and critical pressure. Carbon monoxide (with only
0.2-mol %) had the smallest effect in pressure drop (0.3 %).
Analysis of supercritical and subcritical (or liquid) CO2 fluid transportation shows
that subcritical fluids have higher densities (more volume transported) and lower
pressure losses than supercritical fluids. Subcritical fluid transportation would
therefore have lower pipeline transportation costs than supercritical fluids. Also,
soil heat conductivity has greater effect than ambient temperature in buried
pipelines. Simple equations that approximate binary CO2 fluid properties from
pure CO2 properties were developed and presented.
|
108 |
Investigation Of The Interaction Of Co2 And Ch4 Hydrate For The Determination Of Feasibility Of Co2 Storage In The Black Sea SedimentsOrs, Oytun 01 September 2012 (has links) (PDF)
Recently, carbon dioxide injection into deep sea sediments has become one of the carbon dioxide mitigation methods since carbon dioxide hydrates are stable at the prevailing pressure and temperature conditions.
The Black Sea, which is one of the major identified natural methane hydrate regions of the world, can be a good candidate for carbon dioxide storage in hydrate form. Injected carbon dioxide under the methane hydrate stability region will be in contact with methane hydrate which should be analyzed thoroughly in order to increase our understanding on the gaseous carbon dioxide and methane hydrate interaction.
For the storage of huge amounts of CO2, geological structure must contain an impermeable barrier. In general such a barrier may consist of clay or salt. In this study, sealing efficiency of methane hydrate and long term fate of the CO2 disposal under the methane hydrate zone is investigated.
In order to determine the interaction of CO2 and CH4 hydrate and the sealing efficiency of CH4 hydrate, experimental setup is prepared and various tests are performed including the CH4 hydrate formation in both bulk conditions and within sand particles, measurement of the permeability of unconsolidated sand particles that includes 30% and 50% methane hydrate saturations and injection of CO2 into the CH4 hydrate.
Results of the experiments indicate that, presence of hydrate sharply decreases the permeability of the unconsolidated sand system and systems with hydrate saturations greater than 50% may act as an impermeable layer. Also, CO2-CH4 swap within the hydrate cages is observed at different experimental conditions. As a result of this study, it can be concluded that methane hydrate stability region in deep sea sediments would be a good alternative for the safe storage of CO2. Therefore, methane hydrate stability region in the Black Sea sediments can be considered for the disposal of CO2.
|
109 |
Mobility control of CO₂ flooding in fractured carbonate reservoirs using faom with CO₂ soluble surfactantZhang, Hang 06 November 2012 (has links)
This work investigates the performance of CO₂ soluble surfactants used for CO₂ foam flooding in fractured carbonate reservoirs. Oil recovery associated with the reduction of CO₂ mobility in fractures is assessed by monitoring oil saturation and pressure drops during injection of CO₂ with aqueous surfactant solution in artificially fractured carbonate cores. Distinct novel CO₂ soluble surfactants are evaluated as well as a conventional surfactant. Water flooding and pure CO₂ injection are conducted as baseline. Characterization of fluids and rock are also reported which include Amott test, oil phase behavior and slim tube test. Transport and thermodynamic properties of surfactant and supercritical CO₂ are used to evaluate the process on a core scale using a commercial reservoir simulator. / text
|
110 |
Adéquation de nouvelles compositions d'électrolytes et de revêtements protecteurs nanostructurés de la cathode pour les piles à combustible à carbonates fondus / Adequacy of new electrolyte compositions and nanostructured protective layers for the cathode of molten carbonate fuel cellsMelendez- Ceballos, Arturo 28 April 2017 (has links)
Dans ce travail, nous développons deux grands axes de recherche liés aux carbonates fondus. Le premier est l'optimisation des piles à combustible à base de carbonates fondus, avec deux approches : (i) l'amélioration de la durée de vie de la cathode grâce à des couches ultra-minces d'oxydes métalliques élaborés par la technique de dépôt de couches atomiques; (ii) la modification des électrolytes Li-K et Li-Na par addition de Cs ou de Rb. Le second est consacré à la valorisation du CO2 par sa réduction électrochimique dans les électrolytes à carbonates fondus, où nous analysons la réduction du CO2 par chronopotentiométrie et chronoamperométrie. Finalement, afin de tester les modifications subies par certains des composants analysés dans les deux premières parties, nous avons installé et adapté une configuration de cellule complète couplée à la chromatographie en phase gazeuse. Nous avons obtenu quelques résultats significatifs dans l’ensemble des approches abordées ; en ce qui concerne le point (i), nous avons constaté que TiO2 et CeO2 sont appropriés pour protéger la cathode contre la corrosion sans affecter ses propriétés électrochimiques en réduisant presque de moitié la dissolution du Ni. Les résultats obtenus pour le point (ii) sont également fructueux, car nous avons établi une méthode pour comparer deux électrolytes différents en déterminant les coefficients de diffusion des ions superoxyde et du dioxyde de carbone. Nous avons également comparé les performances de la cathode de NiO dans les électrolytes modifiés avec Cs et Rb. De ces études, nous avons constaté que l'addition de Cs améliore significativement le coefficient de diffusion de CO2 en réduisant la résistance de transfert de charge et la résistance totale à l'électrode, étant l'additif le plus prometteur testé ici. En ce qui concerne la réduction du CO2, nous avons constaté que la réaction implique des espèces adsorbées et instables et se produit en deux étapes à un électron ou une étape à deux électrons ; ainsi, il s’agit très probablement d’un mécanisme de réduction simultanée d’espèces adsorbées et dissoutes. Finalement, nous avons effectué les premiers tests sur cellule complète MCFC dans notre laboratoire, obtenant une performance et une puissance acceptables. Cependant, de petites améliorations sont encore nécessaires pour pouvoir tester les composants modifiés de cellule MCFC. / In this work, we develop two major research routes related to molten carbonates. The first one is the molten carbonate fuel cell optimization, with two approaches: (i) cathode lifetime improvement through ultra-thin layers of metal oxides deposited by atomic layer deposition; (ii) Li-K and Li-Na electrolyte modification by Cs or Rb additions. The second one is dedicated to CO2 valorization through its electrochemical reduction in molten carbonate electrolytes, where we analyze CO2 reduction by means of chronopotentiometry and chronoamperometry. Finally, in order to test some of the component modifications described in the two first parts, we installed and adapted a single-cell setup coupled to gas chromatography. We obtained some significant results in all the approaches; concerning point (i), we found that TiO2 and CeO2 are suitable for cathode corrosion protection without affecting the electrochemical properties of the electrode and reducing almost by half the dissolution of Ni. The results obtained from point (ii) are also fruitful, since we established a method for comparing two different electrolytes and obtained the diffusion coefficients of the superoxides and carbon dioxide. We also compared the performance of the state-of-the-art NiO cathode in Cs and Rb modified electrolytes. From these studies, we found that Cs addition improves significantly the CO2 diffusion coefficient and reduces the charge transfer and total resistance at the electrode, being a promising additive. Regarding CO2 reduction, after all the tests performed, we found that the reaction involves adsorbed and instable species and occurs in two one-electron steps or in two-electron unique step; thus, it follows most probably a mechanism of simultaneous reduction of the adsorbed and dissolved species. Finally, we performed the first MCFC single-cell tests in our laboratory obtaining an acceptable cell performance and output power. However, small improvements are still necessary to be able to test MCFC modified components.
|
Page generated in 0.0573 seconds