• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 145
  • 35
  • 31
  • 15
  • 15
  • 8
  • 6
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 321
  • 31
  • 30
  • 28
  • 24
  • 19
  • 19
  • 18
  • 18
  • 18
  • 18
  • 17
  • 17
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Tvařitelnost tenkých ocelových plechů s povrchovou úpravou eloxovaného hliníku / Formability of Thin Steel Sheets Coated with Anodized Aluminum

Hušek, Martin January 2012 (has links)
Thesis deals with the design of the technological process of anodic oxidation (creating elox coating) on aluminium film in the system steel-aluminium-elox, with the findings of characteristics of this system, comparing with the contemporary knowledge and practical utilization of this system in practice. My thesis in the teoretical part describes creating of anodic oxidation (elox coating) and the process of bending and stretching the sheet. Theoretical aspects of interaction among elox finish, process of bendings and process of stretching are implemented in the experimental part and they are supported by identified knowledge and results. The practical part is focused on improving adhesion, designing and constructing a multifunctional bending product for testing resistance of the finish applied on a tested product. Under the terms of determination distributing deformation and tension in bended coated plate, this plate is tested by statistic analysis with the help of the Finit Element Method (FEM) in the programme ANSYS. The experimental part compares discovered results of each experiment in the system steel – aluminium – elox with the results of aluminium plates with elox finish, stainless plates and steel plates with aluzinc.
142

Evaluation of the Weather Resistance of Ram-Air Kites Used in Airborne Wind Energy Systems

Ambs, Johanna Désirée January 2023 (has links)
Airborne Wind Energy is an emerging technology that harnesses the power of the wind by using tethered wings. Among the flying devices are ram-air wings made from coated textiles that utilize dynamic pressure to gain their shape. During flight operation, the textiles are subject to long-term weathering exposure and high aerodynamic loads, leading to degradation processes and the ultimate loss of functional properties. Therefore, a key challenge in the Airborne Wind Energy industry is the improvement of the textile durability of ram-air kites. This thesis contributes to solving this problem by investigating the effects of 200 hours of artificial weathering and 36 weeks of natural weathering on the mechanical properties of selected state-of-the-art kite textiles and the underlying principles of degradation. The tested materials involve two polyamide 6.6 rip-stop weaves coated with polyurethane and silicone, as well as a coated plain weave and a flexible laminate made from high-modulus polyethylene. The results show that all materials are clearly affected by the exposure to weathering, but the implications on the mechanical properties and the rate of degradation vary significantly. The high-modulus polyethylene textiles demonstrate superior tensile properties, but severe coating degradation causes a significant rise in air permeability. Consequently, the high-modulus polyethylene textiles are considered unsuitable for application in ram-air kites, as the high permeability prevents the kite from maintaining sufficiently high pressure. In contrast, the silicone coated polyamide 6.6 textile exhibits superior air permeability after long-term exposure to weathering conditions. FTIR spectroscopy and TGA indicate that the reduced permeability could arise from curing processes in the silicone coating.
143

Vacuum insulation in buildings : Means to prolong service life

Thorsell, Thomas I. January 2006 (has links)
Vacuum insulation panels, VIPs, constitute a new insulation material, 6 to 8 times better than traditional insulation materials, which utilizes the positive influence vacuum has on the thermal properties of certain materials. A VIP is a composite with a flat core enclosed by an envelope preventing the core to fill with gas. The vacuum in the core is vital to reach thermal conductivities down to 0,0035 W/(m K), if the vacuum is lost the panel has reached the end of its service life time. Metal sheets would the preferred material to create an impermeable envelope but would creates a large thermal bridge at the edges of a panel when it folds over the edges of the panel. A serpentine edge has been proposed in order to deal with this large thermal bridge. This serpentine edge has been evaluated first as a numeric model in software and then by measuring on a prototype edge element in a hot and cold plate instrument. Measured temperatures were used to validate the numerical model. Results show that a serpentine edge can greatly reduce the thermal bridge if designed correctly. Another direction taken in the development of the VIP barrier is to use very thin metal layers, metallization layer or coating, incorporated into multi layered polymer composite film. This creates barrier films with very good barrier properties and only small thermal bridges. The modeling of gas flux through films with more than one coating has only just started. Existing models for flux through multi coated films all assume that flux is only taking place through defects in the coating layers, that all defects are of the same size and that all defects are positioned in square lattices. The model discussed herein use the same assumption of flux through pinholes only but it does take defect sizes and positions into account. Barrier film, from a regular vacuum insulation panel, with double coatings has been evaluated in light microscopy to characterize the defects in each of the coatings. The data found have been fed into the model and the results comply well with reported permeabilities of similar barrier films. / QC 20101125
144

Electrical Characterization and Annealing of DNA Origami Templated Gold Nanowires

Westover, Tyler Richard 27 April 2020 (has links)
DNA origami templates have been studied due the versatility of shapes that can be designed and their compatibility with various materials. This has potential for future electronic applications. This work presents studies performed on the electrical properties of DNA origami templated gold nanowires. Using a DNA origami tile, gold nanowires are site specifically attached in a “C” shape, and with the use of electron beam induced deposition of metal, electrically characterized. These wires are electrically conductive with resistivities as low as 4.24 x 10-5 Ω-m. During moderate temperature processing nanowires formed on DNA origami templates are shown to be affected by the high surface mobility of metal atoms. Annealing studies of DNA origami gold nanowires are conducted, evaluating the effects of atom surface mobility at various temperatures. It is shown that the nanowires separate into individual islands at temperatures as low as 180° C. This work shows that with the use of a polymer template the temperature at which island formation occurs can be raised to 210° C. This could allow for post processing techniques that would otherwise not be possible.
145

THE ELECTRO-MAGNETIC PROPERTIES OF COMBINED CARBON NANOTUBES AND CARBON-COATED IRON NANOPARTICLES-MODIFIED POLYMER COMPOSITES

Jassimran Kaur Arora (16619358) 20 July 2023 (has links)
<p>Polymer based multifunctional material systems (MFMS) have gained increasing attention in the past two decades. The addition of nanofillers and nanoparticles allows for modification of physical properties as well as the discovery of new features. Multifunctionalization of composites allows us to “do more with less”. For example, electrically conductive additives can eliminate the need for sensors through self-sensing principles, shape morphing matrices can reduce the need for actuators, and the inclusion of fire-resistant constituents can reduce flammability in stringent fire protection measures. With added capabilities, the applications of multifunctional composites extends beyond the aerospace and automotive industries to healthcare, infrastructure, electronics, among others, and optics.</p> <p><br></p> <p>The current state of the art is largely focused on single-filler composites or multifiller composites with complementary attributes. For example, carbon nanotubes (CNTs) when mixed with graphene produces higher conductivity than can be achieved via modification with either CNTs or graphene alone. The majority of investigations conducted in this domain have fillers selected with the aim of imparting a singular property. Much less has been done in the area of multifiller and multifunctional polymer matrix composites (PMCs) which can exhibit multiple properties. Consequently, this work seeks to contribute towards the field of synergistic functional composites. That is, a multifiller composite material system comprised of differently functional fillers. This approach has potential to yield smart material systems that outperform single-filler or single-functionality materials through the discovery of novel synergistic coupling between the differently functional phases.</p> <p><br></p> <p>In light of the preceding motivation, this work presents the results on the experimental electromagnetic and mechanical characterization of multi-walled carbon nanotubes (MWCNTs) + carbon-coated iron nanoparticle (CCFeNP)-modified polymers. Carbon nanotubes with their electrical properties and iron nanoparticles with their magnetic attributes present potential for synergistic electromagnetic interactions in a well-percolated network. We report on the electro-magnetic properties of MWCNT + CCFeNP/epoxy composites including DC and AC conductivity, dielectric permittivity, magnetic permeability, and piezoresistance as a function of varying relative MWCNT and CCFeNP concentrations. The results are in a large part linked to the manufacturing process described herein. This work seeks to establish the foundations of synergistic functional filler combinations that could lead to new multifunctional capabilities in the future.</p>
146

THE TRIBOLOGY AND FORMABILITY OF ZINC COATED STEEL SHEETS SUBJECTED TO DIFFERENT STRAIN STATES

Jang, Yohan 17 May 2010 (has links)
No description available.
147

Properties and Use of Graphene Oxide in the Mitigation of Bacterial Contamination in Aviation Fuel

Brown, Nicholas A. 21 August 2012 (has links)
No description available.
148

Cracking Behavior of Structural Slab Bridge Decks

Baah, Prince January 2014 (has links)
No description available.
149

PRECAMBRIAN SEAWATER TEMPERATURE ANALYSIS USING OXYGEN ISOTOPES FROM HAMERSLEY CARBONATES, WESTERN AUSTRALIA

Winhusen, Eric 11 October 2001 (has links)
No description available.
150

Electrochemical Studies of Lithium-Ion Battery Anode Materials in Lithium-Ion Battery Electrolytes

Zhao, Mingchuan 07 December 2001 (has links)
No description available.

Page generated in 0.0462 seconds