1 |
The notched coating adhesion specimen: a fracture test for coatings and accelerated screening test for adhesionChang, Tsunou 18 November 2008 (has links)
A simple adhesion test method is proposed to provide estimates of the debond toughness of adhesive bonds. Notched coating adhesion (NCA) specimens consist of single substrates coated with thin layers of adhesive. The coating is notched to induce initial debonds, and the specimen is then loaded in a manner to produce tensile stresses in the coating. The substrate strain at which the coating debond propagates is then used to determine the critical strain energy release rate. Yielding of the substrate is permitted, and does not complicate the calculations. The specimen geometry results in a mode mix which drives the debond to the interface, thus obtaining a measure of interfacial behavior. Because of the geometry and testing method, the technique is simple, inexpensive and may be conducted quickly. The properties of the coating and the residual stresses of the bond must be known to predict the bond strength. Since accurate data on these properties are not always readily available, the test may be limited as a method to screen adhesive systems. Besides being a screening test, the NCA can be used as an accelerated test to study the durability of adhesive bonds. NCA specimens reach moisture equilibrium quickly because of the short diffusion path. By significantly reducing the amount of time needed for the adhesive/substrate interface to reach equilibrium moisture conditions, the time required to obtain estimates of performance in humid environments is greatly reduced. If one assumes that moisture at the interface is the cause of bond degradation, these simple tests offer the potential to rapidly estimate the durability of a given adhesive/substrate system. Accelerated durability studies were conducted on model steel/epoxy systems, and the results were compared to the results for double cantilever beam tests. / Master of Science
|
2 |
THE TRIBOLOGY AND FORMABILITY OF ZINC COATED STEEL SHEETS SUBJECTED TO DIFFERENT STRAIN STATESJang, Yohan 17 May 2010 (has links)
No description available.
|
3 |
The Adhesion Strength of a Plasma Sprayed Silicon Bond Coating on a Silicon Carbide Ceramic Matrix CompositeScherbarth, Austin Daniel 19 October 2020 (has links)
Silicon-based ceramics and ceramic matrix composites (CMCs), such as silicon carbide (SiC) fiber reinforced SiC, are promising candidates for hot section components in next generation turbine engines. Environmental barrier coatings (EBCs) are essential for implementing these components as they insulate and protect the substrate from reaction with water vapor in the engine environment. EBCs are typically deposited via atmospheric plasma spraying (APS) and preparing the component surfaces through cleaning and roughening prior to coating is a vital step to ensure sufficient coating adhesion. The adhesion of a plasma sprayed coating to the underlying component is one of the most important properties as the component will not be protected if the coating is not well adhered. Surface roughening of metallic components via grit blasting is well documented and understood, but much less is known about preparing ceramic and ceramic composite surfaces for thermal spray coating. Silicon coatings are often used as a bond coating between SiC-based components and EBC top layers, but the adhesion strength of plasma sprayed Si on these substrates, Si splat formation and the factors that affect coating formation and adhesion have not been well studied.
The effects of automated grit blasting process parameters on surface roughness and material loss of a reaction bonded SiC (rb SiC) composite were evaluated. Surface roughness before and after grit blasting was evaluated with a confocal laser scanning microscope. The differences and advantages of automated grit blasting compared to manual grit blasting were observed. Most notably was the level of control at high nozzle traverse speeds resulting in reduction of material loss and consistency of roughening. At high nozzle traverse speeds, the amount of material loss decreased greatly with a small effect on induced surface roughness. The degree of grit blasting induced roughness and material loss was found to be largely dependent on the nature of the composite matrix and reinforcement, as well as blast nozzle traverse speed. A statistical model was developed to predict the substrate thickness loss and induced average roughness based on nozzle traverse speed and blast pressure for automated grit blasting.
Additionally, laser ablation was used to create controlled, regularly patterned surface texture on rb SiC substrates to further investigate the role of texture parameters in Si coating adhesion. Si was plasma sprayed onto rb SiC substrates to deposit both thick coatings to evaluate adhesion strength and single splats to study splat formation. Surface roughness/texture, substrate preheat temperature and mean Si particle size were varied in plasma spray coating experiments to observe their role in coating adhesion strength. Si adhesion strength was found to be related to all three factors and a statistical model was developed to predict adhesion strength based on them. Substrate preheat temperature had a significant effect on both Si adhesion strength and Si splat formation on rb SiC.
Single splat formation during plasma spraying of Si on SiC was simulated with software called SimDrop. Simulations of Si droplet impact, spreading and solidification during plasma spraying on smooth and textured SiC surfaces were used to investigate the effects of relevant process parameters on splat formation. Experimentally observed Si splats on smooth substrates at different temperatures during deposition were matched with simulated splats with the same spraying parameters. A change in thermal contact resistance with changing substrate preheat temperature was confirmed by the simulation results. The role of surface texture parameters for a regularly patterned surface texture in splat formation was demonstrated through simulation.
This dissertation investigates methods of roughening and preparing a SiC composite substrate for plasma spray coating, as well as factors which affect the adhesion strength and splat formation of plasma sprayed Si through experiments and simulation. The observations made provide valuable insight for understanding and optimizing the manufacturing processes utilized to deposit strongly adhered coatings onto SiC-based composites. In addition, areas of interest in this field for future study and further investigation are introduced and suggested. / Doctor of Philosophy / Silicon-based ceramics and ceramic matrix composites (CMCs), such as silicon carbide (SiC) fiber reinforced SiC, are promising candidates for hot section components in next generation turbine engines. Environmental barrier coatings (EBCs) are essential for implementing these components as they insulate and protect the substrate from reaction with water vapor in the engine environment. EBCs are typically deposited via atmospheric plasma spraying (APS) and preparing the component surfaces through cleaning and roughening prior to coating is a vital step to ensure sufficient coating adhesion. The adhesion of a plasma sprayed coating to the underlying component is one of the most important properties as the component will not be protected if the coating is not well adhered. Silicon coatings are often used as a bond coating between SiC-based components and EBC top layers, but the adhesion strength of plasma sprayed Si on these substrates, Si splat formation and the factors that affect coating formation and adhesion have not been well studied. This dissertation investigates methods of roughening and preparing a SiC composite substrate for plasma spray coating, as well as factors which affect the adhesion strength and splat formation of plasma sprayed Si through experiments and simulation. The observations made provide valuable insight for understanding and optimizing the manufacturing processes utilized to deposit strongly adhered coatings onto SiC-based composites. In addition, areas of interest in this field for future study and further investigation are introduced and suggested.
|
4 |
Interfacial Adhesion Failure : Impact on print-coating surface defectsKamal Alm, Hajer January 2016 (has links)
The aim of this work was to develop a solid knowledge on formulation effects controlling offset ink-paper coating adhesion and to identify key factors of the coating and printing process affecting it. Focus lay on comprehending the impact of pigment dispersant on ink-paper coating adhesion and ultimately on the print quality of offset prints. The work covers laboratory studies, a pilot coating trial designed to produce coated material with a span in surface chemistry and structure, and an industrial offset printing trial. The lab scale studies quantified ink-paper coating adhesion failure during ink setting with a developed laboratory procedure based on the Ink-Surface Interaction Tester (ISIT) and image analysis. Additional polyacrylate dispersant resulted in slower ink setting and reduced ink-paper coating adhesion, with a dependence on its state of salt neutralisation and cation exchange, mainly in the presence of moisture/liquid water. The industrial printing trial on pilot coated papers was designed to study how these laboratory findings affected full scale offset print quality. These trials confirmed the dispersant-sensitive effect on ink-paper coating adhesion, especially at high water feeds. Evaluation of prints from the printing trial resulted in two fundamentally different types of ink adhesion failure being identified. The first type being traditional ink refusal, and the second type being a novel mechanism referred to as ink-lift-off adhesion failure. Ink-lift-off adhesion failure occurs when ink is initially deposited on the paper but then lifted off in a subsequent print unit. In this work, ink adhesion failure by this ink-lift-off mechanism was observed to occur more often than failure due to ink refusal. Print quality evaluation of the industrial prints suggested that water induced mottle was caused by a combination of ink-surface adhesion failure, creating white spots on the print, together with variation in ink layer thickness due to emulsified ink. / <p>QC 20161019</p>
|
5 |
Durability of Polyimide/Titanium Adhesive Bonds: An Interphase InvestigationGiunta, Rachel K. 18 November 1999 (has links)
When bonded joints are subjected to harsh environmental conditions, the interphase, the three-dimensional region surrounding the adhesive/substrate interface, becomes critically important. Frequently, failure occurs in this region after adhesively bonded systems are subjected to elevated temperature oxidative aging. In a previous study, this was found to be the case with a polyimide adhesive bonded to chromic acid anodized (CAA) Ti-6Al-4V. The objective of the current research has been twofold: 1) to investigate the effect of thermal aging on the interphase region of polyimide/titanium adhesive joints, and 2) to evaluate the method used in the current study for durability characterization of other adhesive/substrate systems.
The method used in this research has been to characterize the effect of elevated temperature aging on the following systems: 1) Notched coating adhesion (NCA) specimens and 2) bulk samples of dispersed substrate particles in an adhesive matrix. The NCA test has the advantages of an accelerated aging geometry and a mode mix that leads to failure through the interphase, the region of interest. The bulk samples have the advantage of an increased interphase volume and allow for the application of bulk analysis techniques to the interphase, a region that is traditionally limited to surface analysis techniques.
The adhesive systems studied consisted of one of two polyimide adhesives, LaRC© PETI-5 or Cytec Fiberite© FM-5, bonded to CAA Ti-6Al-4V. The model filled system consisted of a PETI-5 matrix with amorphous titanium dioxide filler. Through the use of the NCA test, it was determined that bonded specimens made with FM-5 lose approximately 50% of their original fracture energy when aged in air at 177°C for 30 days. This aging temperature is well below the glass transition temperature of the adhesive, 250°C. At the same time, the failure location moves from the anodized oxide layer to the adhesive that is directly adjacent to the substrate surface, the interphase region. Through surface analysis of this region, it is determined that the adhesive penetrates the pores of the CAA surface to a depth of 70 to 100 nm, promoting adhesion at the interface. With aging, the adhesive in the interphase region appears to be weakening, although analysis of the bulk adhesive after aging shows little change. This indicates that adhesive degradation is enhanced in the interphase compared to the bulk.
Analysis of the model filled system gave similar information. Specimens containing titanium dioxide filler had glass transition temperatures that were approximately 20°C lower than the neat polyimide samples. In addition, the filled samples contained a significant portion of low molecular weight extractable material that was not present in the neat specimens.
The tan delta spectra from dynamic mechanical thermal analysis of the filled specimens exhibited a shoulder on the high-temperature side of the glass transition peak. This shoulder is attributed to the glass transition of the interphase, a distinct phase of the polyimide which is constrained by adsorption onto the filler particle surfaces. As a function of aging time at 177° or 204°C, the shoulder decreases substantially in magnitude, which may relate to loss of adhesive strength between the polyimide and the filler particles.
From this research, it has been illustrated that information relating to the durability of adhesively bonded systems is gained using an interfacially debonding adhesive test and a model system of substrate particles dispersed in an adhesive matrix / Ph. D.
|
6 |
Vliv morfologie povlaku Zn na mezní podmínky při tažení tenkých plechů / Influence of Zinc Coating Morphology on Limit Conditions Formability of Thin Sheet MetalCísařová, Michaela January 2012 (has links)
The doctor thesis deals about the influence of zinc coating morphology on limit conditions formability of a thin sheet metal. In the introduction of the thesis is discusesed about current problems searching the most suitable morphology of the steel sheet metals, a method of appliing to the zinc sheet metal. The hot dip zinc coating is discussed in next chapter, the topical knowledges about the influence of the individual factors have some effect to coat calibre and quality. In literary researchs are discussed the concrete technological tests of zinc coating to harder sheet metal forming, the theory of the bend and the basic theory of pressing sheet metal. In following chapter is devoted interpretation selected technological tests, according to that is described behaviour, characteristics, influence of zinc coating formability of basic material and his morphology.
|
Page generated in 0.1152 seconds