• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 613
  • 222
  • 164
  • 53
  • 40
  • 15
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 6
  • Tagged with
  • 1652
  • 289
  • 259
  • 232
  • 204
  • 201
  • 191
  • 136
  • 126
  • 108
  • 106
  • 104
  • 99
  • 94
  • 86
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
481

Synthesis and characterisation of cobal (II)- imidazolyl complexes as potential catalysts in the oxidation of phenol and styrene

Sebati, Ngwanamohuba Wilhemina Ngwanamohuna Wilhemina January 2014 (has links)
Thesis (MSc. (Chemistry)) --University of Limpopo, 2014 / This study deals with the synthesis and characterisation of cobalt complexes of nitrogen-donor imidazolyl- salicylaldimine ligands and their potential catalytic activity in the oxidation reactions of phenol and styrene. Five ligands were used in the study, four of which are new. Compound 2,4-di-tert-butyl-6{[2-(1H-imidazol-4-yl)-ethylimino]-methyl}-phenol (L1), was synthesised according to a literature procedure. The other imidazole-based salicylaldimine compounds 2-ethoxy-6{[2-(1H-imidazol-4-yl)-ethylimino]-methyl}-phenol (L2), 4-methoxy-6{[2-(1H-imidazol-4-yl)-ethylimino]-methyl}-phenol (L3), 1{[2-(1H-imidazol-4-yl)-ethylimino]-methyl}-benzene (L4) and 4-methyl-1{[2-(1H-imidazol-4-yl)-ethylimino]-methyl}-benzene (L5) were prepared by Schiff base condensation reaction of histamine dihydrochloride with 3-ethoxy-2-hydroxybenzaldehyde, 5-methoxy-2-hydroxybenzaldehyde, benzaldehyde, 4-methylbenzaldehyde respectively. L1-L5 were characterised by 1H and 13C{1H} NMR, IR and UV-vis spectroscopy and high resolution mass spectrometry (HRMS). Reactions of L1-L5 with CoCl2 yielded complexes C1-C5, while complexes C6-C10 were synthesised by reactions of L1-L5 with CoBr2 all in a ratio of 1:1 of ligand to metal precursor. The cobalt(II) complexes were characterised by IR and UV-vis spectroscopy, elemental analysis and high resolution mass spectrometry due to their paramagnetic nature. All the characterisation data point to complexes C1-C10 being formulated as [Co(3-L)X] (where L = ligand and X = halide). However, single crystal X-ray diffraction showed that the prolonged stay of complex C6 in a solution gave a new structure as complex C11. The imidazole-based salicylaldimine cobalt(II) complexes (C1-C10) were tested as catalysts for the oxidation reactions of phenol and styrene with H2O2, O2 and 3-chloroperbenzoic acid as oxidants. The complexes were found not to be active for the oxidation of both substrates (phenol and styrene) with 0% conversion, even when the reactions were left for 1 week. Analysis of the oxidation reactions were performed with GC and 1H NMR spectroscopy. Both analysis methods showed the presence of unreacted substrates at the end of the reaction period. Effects of concentration of pre-catalysts, substrates and oxidants, time and temperature of reaction and nature of solvent on catalytic activity were also investigated, however the conversions remained at 0% conversion.
482

Co(II) Based Metalloradical Catalysis: Carbene and Nitrene Transfer Reactions

Gill, Joseph B. 19 November 2014 (has links)
Radical chemistry has attracted a large amount of research interest over the last few decades and radical reactions have recently been recognized as powerful tools for organic synthesis. The synthetic applications of radicals have been demonstrated in many fields, including in the synthesis of complex natural products. Radical reactions have a number of inherent synthetic advantages over their ionic counterparts. For example, they typically proceed at fast reaction rates under mild and neutral conditions in a broad spectrum of solvents and show significantly greater functional group tolerance. Furthermore, radical processes have the capability of performing in a cascade fashion, allowing for the rapid construction of complex molecular structures with multiple stereogenic centers. To further enhance the synthetic applications of radical reactions, current efforts are devoted toward the development of effective approaches for the regioselective control of their reactivity as well as stereoselectivity, especially enantioselectivity, a challenging issue that is intrinsically challenged by the "free" nature of radical chemistry. This research has identified a fundamentally new approach to radical reactions based on the concept of metalloradical catalysis (MRC) for controlling the stereoselectivity of both C- and N-centered radical reactions. Cobalt(II) porphyrins [Co(Por)], are stable metalloradicals, and have been shown to enable the activation of diazo reagents and azides to cleanly generate C- and N-centered radicals, respectively, with N2 as the only byproduct in a controlled and catalytic manner. In addition to the radical nature of [Co(Por)], the low bond dissociation energy of Co-C/Co-N bonds plays a key role in the successful turnover of the Co(II)-based catalytic carbene and nitrene transfers. Through the support of porphyrin ligands with tunable electronic, steric, and chiral environments, this general concept of Co(II)-based metalloradical catalysis (Co-MRC) has been successfully applied to the development of various radical processes that enable stereoselective carbene and nitrene transfers.
483

Extraction and separation of cobalt from acidic nickel laterite leach solutions using electrostatic pseudo liquid membrane (ESPLIM)

Heckley, Philip Scott January 2002 (has links)
Approximately 70% of the western world's known nickel reserves are contained in laterite ores, but only 30% of the world's nickel production comes from these ores. This is due to the lack of economically viable technology to extract the nickel from these ores. However, recent advances in pressure acid leaching technology have resulted in new commercial attempts to extract nickel and its valuable by-product, cobalt, from laterite ores. The commissioning of three nickel laterite projects in Western Australia in the late 1990s represents the first of these new generation nickel operations, with several other projects; in Australia and overseas, in various stages of development. Unfortunately, several technical issues have hindered full production in these new refineries. Some of these problems are directly attributable to the mixer-settler contactors used in the solvent extraction process. This has highlighted a need to develop alternative contactors for industrial use. Electrostatic Pseudo Liquid Membrane (ESPLIM) is an alternative, novel technique to conduct the solvent extraction process. It combines the basic principles of solvent extraction, liquid membrane and electrostatic dispersion into a simple, compact reactor that utilises many advantages of each technique. The aim of this study w as to develop a method of extracting and separating cobalt from an acidic nickel laterite leach solution using ESPLIM. Bench scale tests using synthetic and actual leach solutions have shown that: the design and construction materials of the baffle plate and electrodes have a significant effect on the performance of the reactor; an AC power supply provided better droplet dispersion than a DC power supply; an increase in the applied electric field strength above a critical value resulted in a decrease in the aqueous droplet size and an increase in residence tune. / These effects increased the extraction efficiency and the concentration of the loaded strip solution. However, further increases in applied electric field strength decreased efficiency due to excessive levels of swelling and leakage; the known extraction isotherms for cobalt and nickel apply in the ESPLIM technique; salts of soluble organic acids influence extraction efficiency by changing the aqueous pH and interfacial tension; the use of ammonia was found to be effective as a replacement for salts of soluble organic acids; the ESPLIM reactor can cope with large changes in the flow rates of both feed and strip solutions. However, an increase in the feed flow rate should be accompanied by a relative increase in the ship flow rate to maintain high extraction efficiencies; the baffle design has a significant impact on the levels of swelling and leakage; provided the electrostatic field strength is maintained and flow rates are increased proportionately to the size of the reactor, no significant scale-up issues were observed, indicating that the data generated in bench scale studies could be applied to plant scale contactors. The optimum conditions, devised as a result of this investigation, to extract cobalt from an acidic nickel laterite leach solution using the ESPLIM technique are as follows: an applied electric field strength of 5.5 kV/cm. a raffinate pH of 5.5, a solvent containing 10% Cyanex 272 with 5% TBP in Solvent HF diluent, a feed to strip flow ratio of approximately 5 and a 1 M H[subscript]2S0[subscript]4 strip solution. At these conditions, almost complete cobalt extraction is achieved after only two extraction stages. A comparable extraction using conventional mixer-settlers could only be achieved after five stages.
484

Anisotropie d'agrégats de cobalt

Morel, Robert 18 March 2009 (has links) (PDF)
Ce mémoire présente une revue sur la croissance d'agrégats de cobalt par condensation en phase gazeuse. Suit une revue des différent mécanismes physiques à l'origine de l'anisotropie magnétique du cobalt, et de leurs manifestations dans des particules nanométriques.
485

A dose reconstruction of ������Co contaminated window frames in a Taiwanese school

Brock, Kathryn M. 26 April 1999 (has links)
Graduation date: 1999
486

Kinetic and Mechanistic Studies of CO Hydrogenation over Cobalt-based Catalysts

Schweicher, Julien 25 November 2010 (has links)
During this PhD thesis, cobalt (Co) catalysts have been prepared, characterized and studied in the carbon monoxide hydrogenation (CO+H2) reaction (also known as “Fischer-Tropsch” (FT) reaction). In industry, the FT synthesis aims at producing long chain hydrocarbons such as gasoline or diesel fuels. The interest is that the reactants (CO and H2) are obtained from other carbonaceous sources than crude oil: natural gas, coal, biomass or even petroleum residues. As it is well known that the worldwide crude oil reserves will be depleted in a few decades, the FT reaction represents an attractive alternative for the production of various fuels. Moreover, this reaction can also be used to produce high value specialty chemicals (long chain alcohols, light olefins…). Two different types of catalysts have been investigated during this thesis: cobalt with magnesia used as support or dispersant (Co/MgO) and cobalt with silica used as support (Co/SiO2). Each catalyst from the first class is prepared by precipitation of a mixed Co/Mg oxalate in acetone. This coprecipitation is followed by a thermal decomposition under reductive atmosphere leading to a mixed Co/MgO catalyst. On the other hand, Co/SiO2 catalysts are prepared by impregnation of a commercial silica support with a chloroform solution containing Co nanoparticles. This impregnation is then followed by a thermal activation under reductive atmosphere. The mixed Co/Mg oxalates and the resulting Co/MgO catalysts have been extensively characterized in order to gain a better understanding of the composition, the structure and the morphology of these materials: thermal treatments under reductive and inert atmospheres (followed by MS, DRIFTS, TGA and DTA), BET surface area measurements, XRD and electron microscopy studies have been performed. Moreover, an original in situ technique for measuring the H2 chemisorption surface area of catalysts has been developed and used over our catalysts. The performances of the Co/MgO and Co/SiO2 catalysts have then been evaluated in the CO+H2 reaction at atmospheric pressure. Chemical Transient Kinetics (CTK) experiments have been carried out in order to obtain information about the reaction kinetics and mechanism and the nature of the catalyst active surface under reaction conditions. The influence of several experimental parameters (temperature, H2 and CO partial pressures, total volumetric flow rate) and the effect of passivation are also discussed with regard to the catalyst behavior. Our results indicate that the FT active surface of Co/MgO 10/1 (molar ratio) is entirely covered by carbon, oxygen and hydrogen atoms, most probably associated as surface complexes (possibly formate species). Thus, this active surface does not present the properties of a metallic Co surface (this has been proved by performing original experiments consisting in switching from the CO+H2 reaction to the propane hydrogenolysis reaction (C3H8+H2) which is sensitive to the metallic nature of the catalyst). CTK experiments have also shown that gaseous CO is the monomer responsible for chain lengthening in the FT reaction (and not any CHx surface intermediates as commonly believed). Moreover, CO chemisorption has been found to be irreversible under reaction conditions. The CTK results obtained over Co/SiO2 are quite different and do not permit to draw sharp conclusions concerning the FT reaction mechanism. More detailed studies would have to be carried out over these samples. Finally, Co/MgO catalysts have also been studied on a combined DRIFTS/MS experimental set-up in Belfast. CTK and Steady-State Isotopic Transient Kinetic Analysis (SSITKA) experiments have been carried out. While formate and methylene (CH2) groups have been detected by DRIFTS during the FT reaction, the results indicate that these species play no role as active intermediates. These formates are most probably located on MgO or at the Co/MgO interface, while methylene groups stand for skeleton CH2 in either hydrocarbon or carboxylate. Unfortunately, formate/methylene species have not been detected by DRIFTS over pure Co catalyst without MgO, because of the full signal absorption.
487

Décomposition thermique et propriétés électriques de Co3O4

Malecki, Andrzej 09 July 1985 (has links) (PDF)
La cinétique de la décomposition thermique de Co3O4 a été étudiée sur des échantillons pulvérulent ou monocristallins. La formation d'une couche compacte de monoxyde de cobalt ainsi que la forme de l'équation décrivant les courbes degré de décomposition-temps ont abouti au développement d'un modèle dans lequel la cinétique est limitée par la diffusion de l'oxygène à travers la couche. Ce modèle dérive de celui de Ginstling et Brounshtein tient compte de la variation de l'énergie d'activation avec le degré de décomposition. Une interprétation des propriétés électriques de Co3O4 pur et dopé est également proposée.
488

Alternative Redox Couples for Dye-Sensitized Solar Cells

Feldt, Sandra January 2013 (has links)
Dye-sensitized solar cells (DSCs) convert sunlight to electricity at a low cost. In the DSC, a dye anchored to a mesoporous TiO2 semiconductor is responsible for capturing the sunlight. The resulting excited dye injects an electron into the conduction band of the TiO2 and is in turn regenerated by a redox mediator, normally iodide/triiodide, in a surrounding electrolyte. The success of the iodide/triiodide redox couple is mainly attributed to its slow interception of electrons at the TiO2 surface, which suppresses recombination losses in the DSC. One of the main limitations with the iodide/triiodide redox couple is, however, the large driving force needed for regeneration, which minimizes the open circuit voltage and thus the energy conversion efficiency. In this thesis, alternative redox couples to the iodide/triiodide redox couple have been investigated. These redox couples include the one-electron transition metal complexes, ferrocene and cobalt polypyridine complexes. The use of one-electron redox couples in the DSC has previously been shown to lead to poor photovoltaic performances, because of increased recombination. Cobalt redox couples were here found to give surprisingly high efficiencies in combination with the triphenylamine-based organic dye, D35. The success of the D35 dye, in combination with cobalt redox couples, was mainly attributed to the introduction of steric alkoxy chains on the dye, which supress recombination losses. By introducing steric substituents on the dye, rather than on the redox couple, mass transport limitations could in addition be avoided, which previously has been suggested to limit the performance of cobalt complexes in the DSC. The result of this study formed the basis for the world record efficiency of DSCs of 12.3 % using cobalt redox couples. Interfacial electron-transfer processes in cobalt-based DSCs were investigated to gain information of advantages and limitations using cobalt redox couples in the DSC. The redox potentials of cobalt redox couples are easily tuned by changing the coordination sphere of the complexes, and regeneration and recombination kinetics were systematically investigated by increasing the redox potential of the cobalt complexes. Our hope is that this thesis can be a guideline for future design of new redox systems in DSCs.
489

none

Huang, Cheng-Fa 09 September 2002 (has links)
none
490

Electrodéposition et propriétés magnétiques de nanofils d'alliage CoxPt1-x thèse pour le doctorat en sciences spécialité Physique /

Mallet, Jérémy Yu-Zhang, Kui. January 2005 (has links) (PDF)
Reproduction de : Thèse de doctorat : Physique : Reims : 2004. / Titre provenant de l'écran titre. Références bibliogr. en fin de chapitres.

Page generated in 0.028 seconds