Spelling suggestions: "subject:"circuitos"" "subject:"cortocircuitos""
1 |
A Propriedade Erdös-Pósa para matróides. / The Erdös-Posa Property for matroids.VASCONCELOS, José Eder Salvador de. 23 July 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-23T15:16:49Z
No. of bitstreams: 1
JOSÉ EDER SALVADOR DE VASCONCELOS - DISSERTAÇÃO PPGMAT 2009..pdf: 634118 bytes, checksum: e65e70c702364b197a36f09e8d1ef296 (MD5) / Made available in DSpace on 2018-07-23T15:16:49Z (GMT). No. of bitstreams: 1
JOSÉ EDER SALVADOR DE VASCONCELOS - DISSERTAÇÃO PPGMAT 2009..pdf: 634118 bytes, checksum: e65e70c702364b197a36f09e8d1ef296 (MD5)
Previous issue date: 2009-11 / Capes / O número de cocircuitos disjuntos em uma matróide é delimitado pelo seu posto.
Existem, no entanto, matróides de posto arbitrariamente grande que não contêm dois
cocircuitos disjuntos. Considere, por exemplo,M(Kn) eUn,2n. Além disso, a matróide
bicircularB(Kn) pode ter posto arbitrariamente grande, mas não tem 3 cocircuitos
disjuntos. Nós apresentaremos uma prova, obtida por Jim Geelen e Kasper Kabell em
(5), para o seguinte fato: para cadak en, existe uma constantec tal que, seM é uma
matróide com posto no mínimoc, entãoM temk cocircuitos disjuntos ou contém uma
das seguintes matróides como menorUn,2n,M(Kn) ouB(Kn). / The number of disjoint cocircuits in a matroid is bounded by its rank. There are,
however, matroids of rank arbitrarily large that do not contain two disjoint cocircuits.
Consider, for example,M(kn) andUn,2n. Moreover, the bicircular matroidB(kn) may
have arbitrarily large rank but do not have 3 disjoints cocircuits. We show a proof
obtained by Jim Geelen and Kasper Kabell in (5) to the following fact: for everyk
andn, there is a constantc such that ifM is a matroid with rank at leastc, thenM
hask disjoint cocircuits orM contains one of the following matroids as a minorUn,2n,
M(kn) orB(kn).
|
Page generated in 0.0418 seconds