• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • 4
  • Tagged with
  • 13
  • 13
  • 12
  • 10
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Problèmes de placement, de coloration et d’identification / On packing, colouring and identification problems

Valicov, Petru 09 July 2012 (has links)
Dans cette thèse, nous nous intéressons à trois problèmes issus de l'informatique théorique, à savoir le placement de formes rectangulaires dans un conteneur (OPP), la coloration dite "forte" d'arêtes des graphes et les codes identifiants dans les graphes. L'OPP consiste à décider si un ensemble d'items rectangulaires peut être placé sans chevauchement dans un conteneur rectangulaire et sans dépassement des bords de celui-ci. Une contrainte supplémentaire est prise en compte, à savoir l'interdiction de rotation des items. Le problème est NP-difficile même dans le cas où le conteneur et les formes sont des carrés. Nous présentons un algorithme de résolution efficace basé sur une caractérisation du problème par des graphes d'intervalles, proposée par Fekete et Schepers. L'algorithme est exact et utilise les MPQ-arbres - structures de données qui encodent ces graphes de manière compacte tout en capturant leurs propriétés remarquables. Nous montrons les résultats expérimentaux de notre approche en les comparant aux performances d'autres algorithmes existants. L'étude de la coloration forte d'arêtes et des codes identifiants porte sur les aspects structurels et de calculabilité de ces deux problèmes. Dans le cas de la coloration forte d'arêtes nous nous intéressons plus particulièrement aux familles des graphes planaires et des graphes subcubiques. Nous montrons des bornes optimales pour l'indice chromatique fort des graphes subcubiques en fonction du degré moyen maximum et montrons que tout graphe planaire subcubique sans cycles induits de longueur 4 et 5 est coloriable avec neuf couleurs. Enfin nous confirmons la difficulté du problème de décision associé, en prouvant qu'il est NP-complet dans des sous-classes restreintes des graphes planaires subcubiques.La troisième partie de la thèse est consacrée aux codes identifiants. Nous proposons une caractérisation des graphes identifiables dont la cardinalité du code identifiant minimum ID est n-1, où n est l'ordre du graphe. Nous étudions la classe des graphes adjoints et nous prouvons des bornes inférieures et supérieures serrées pour le paramètre ID dans cette classe. Finalement, nous montrons qu'il existe un algorithme linéaire de calcul de ID dans la classe des graphes adjoints L(G) où G a une largeur arborescente bornée par une constante. En revanche nous nous apercevons que le problème est NP-complet dans des sous-classes très restreintes des graphes parfaits. / In this thesis we study three theoretical computer science problems, namely the orthogonal packing problem (OPP for short), strong edge-colouring and identifying codes.OPP consists in testing whether a set of rectangular items can be packed in a rectangular container without overlapping and without exceeding the borders of this container. An additional constraint is that the rotation of the items is not allowed. The problem is NP-hard even when the problem is reduced to packing squares in a square. We propose an exact algorithm for solving OPP efficiently using the characterization of the problem by interval graphs proposed by Fekete and Schepers. For this purpose we use some compact representation of interval graphs - MPQ-trees. We show experimental results of our approach by comparing them to the results of other algorithms known in the literature. we observe promising gains.The study of strong edge-colouring and identifying codes is focused on the structural and computational aspects of these combinatorial problems. In the case of strong edge-colouring we are interested in the families of planar graphs and subcubic graphs. We show optimal upper bounds for the strong chromatic index of subcubic graphs as a function of the maximum average degree. We also show that every planar subcubic graph without induced cycles of length 4 and 5 can be strong edge-coloured with at most nine colours. Finally, we confirm the difficulty of the problem by showing that it remains NP-complete even in some restricted classes of planar subcubic graphs.For the subject of identifying codes we propose a characterization of non-trivial graphs having maximum identifying code number ID, that is n-1, where n is the number of vertices. We study the case of line graphs and prove lower and upper bounds for ID parameter in this class. At last we investigate the complexity of the corresponding decision problem and show the existence of a linear algorithm for computing ID of the line graph L(G) where G has the size of the tree-width bounded by a constant. On the other hand, we show that the identifying code problem is NP-complete in various subclasses of planar graphs.
12

Contributions to combinatorics on words in an abelian context and covering problems in graphs / Contributions à la combinatoire des mots dans un contexte abélien et aux problèmes de couvertures dans les graphes

Vandomme, Elise 07 January 2015 (has links)
Cette dissertation se divise en deux parties, distinctes mais connexes, qui sont le reflet de la cotutelle. Nous étudions et résolvons des problèmes concernant d'une part la combinatoire des mots dans un contexte abélien et d'autre part des problèmes de couverture dans des graphes. Chaque question fait l'objet d'un chapitre. En combinatoire des mots, le premier problème considéré s'intéresse à la régularité des suites au sens défini par Allouche et Shallit. Nous montrons qu'une suite qui satisfait une certaine propriété de symétrie est 2-régulière. Ensuite, nous appliquons ce théorème pour montrer que les fonctions de complexité 2-abélienne du mot de Thue--Morse ainsi que du mot appelé ''period-doubling'' sont 2-régulières. Les calculs et arguments développés dans ces démonstrations s'inscrivent dans un schéma plus général que nous espérons pouvoir utiliser à nouveau pour prouver d'autres résultats de régularité. Le deuxième problème poursuit le développement de la notion de mot de retour abélien introduite par Puzynina et Zamboni. Nous obtenons une caractérisation des mots sturmiens avec un intercepte non nul en termes du cardinal (fini ou non) de l'ensemble des mots de retour abélien par rapport à tous les préfixes. Nous décrivons cet ensemble pour Fibonacci ainsi que pour Thue--Morse (bien que cela ne soit pas un mot sturmien). Nous étudions la relation existante entre la complexité abélienne et le cardinal de cet ensemble. En théorie des graphes, le premier problème considéré traite des codes identifiants dans les graphes. Ces codes ont été introduits par Karpovsky, Chakrabarty et Levitin pour modéliser un problème de détection de défaillance dans des réseaux multiprocesseurs. Le rapport entre la taille optimale d'un code identifiant et la taille optimale du relâchement fractionnaire d'un code identifiant est comprise entre 1 et 2 ln(|V|)+1 où V est l'ensemble des sommets du graphe. Nous nous concentrons sur les graphes sommet-transitifs, car nous pouvons y calculer précisément la solution fractionnaire. Nous exhibons des familles infinies, appelées quadrangles généralisés, de graphes sommet-transitifs pour lesquelles les solutions entière et fractionnaire sont de l'ordre |V|^k avec k dans {1/4, 1/3, 2/5}. Le second problème concerne les (r,a,b)-codes couvrants de la grille infinie déjà étudiés par Axenovich et Puzynina. Nous introduisons la notion de 2-coloriages constants de graphes pondérés et nous les étudions dans le cas de quatre cycles pondérés particuliers. Nous présentons une méthode permettant de lier ces 2-coloriages aux codes couvrants. Enfin, nous déterminons les valeurs exactes des constantes a et b de tout (r,a,b)-code couvrant de la grille infinie avec |a-b|>4. Il s'agit d'une extension d'un théorème d'Axenovich. / This dissertation is divided into two (distinct but connected) parts that reflect the joint PhD. We study and we solve several questions regarding on the one hand combinatorics on words in an abelian context and on the other hand covering problems in graphs. Each particular problem is the topic of a chapter. In combinatorics on words, the first problem considered focuses on the 2-regularity of sequences in the sense of Allouche and Shallit. We prove that a sequence satisfying a certain symmetry property is 2-regular. Then we apply this theorem to show that the 2-abelian complexity functions of the Thue--Morse word and the period-doubling word are 2-regular. The computation and arguments leading to these results fit into a quite general scheme that we hope can be used again to prove additional regularity results. The second question concerns the notion of return words up to abelian equivalence, introduced by Puzynina and Zamboni. We obtain a characterization of Sturmian words with non-zero intercept in terms of the finiteness of the set of abelian return words to all prefixes. We describe this set of abelian returns for the Fibonacci word but also for the Thue-Morse word (which is not Sturmian). We investigate the relationship existing between the abelian complexity and the finiteness of this set. In graph theory, the first problem considered deals with identifying codes in graphs. These codes were introduced by Karpovsky, Chakrabarty and Levitin to model fault-diagnosis in multiprocessor systems. The ratio between the optimal size of an identifying code and the optimal size of a fractional relaxation of an identifying code is between 1 and 2 ln(|V|)+1 where V is the vertex set of the graph. We focus on vertex-transitive graphs, since we can compute the exact fractional solution for them. We exhibit infinite families, called generalized quadrangles, of vertex-transitive graphs with integer and fractional identifying codes of order |V|^k with k in {1/4,1/3,2/5}. The second problem concerns (r,a,b)-covering codes of the infinite grid already studied by Axenovich and Puzynina. We introduce the notion of constant 2-labellings of weighted graphs and study them in four particular weighted cycles. We present a method to link these labellings with covering codes. Finally, we determine the precise values of the constants a and b of any (r,a,b)-covering code of the infinite grid with |a-b|>4. This is an extension of a theorem of Axenovich.
13

Contributions to combinatorics on words in an abelian context and covering problems in graphs / Contributions à la combinatoire des mots dans un contexte abélien et aux problèmes de couvertures dans les graphes

Vandomme, Elise 07 January 2015 (has links)
Cette dissertation se divise en deux parties, distinctes mais connexes, qui sont le reflet de la cotutelle. Nous étudions et résolvons des problèmes concernant d'une part la combinatoire des mots dans un contexte abélien et d'autre part des problèmes de couverture dans des graphes. Chaque question fait l'objet d'un chapitre. En combinatoire des mots, le premier problème considéré s'intéresse à la régularité des suites au sens défini par Allouche et Shallit. Nous montrons qu'une suite qui satisfait une certaine propriété de symétrie est 2-régulière. Ensuite, nous appliquons ce théorème pour montrer que les fonctions de complexité 2-abélienne du mot de Thue--Morse ainsi que du mot appelé ''period-doubling'' sont 2-régulières. Les calculs et arguments développés dans ces démonstrations s'inscrivent dans un schéma plus général que nous espérons pouvoir utiliser à nouveau pour prouver d'autres résultats de régularité. Le deuxième problème poursuit le développement de la notion de mot de retour abélien introduite par Puzynina et Zamboni. Nous obtenons une caractérisation des mots sturmiens avec un intercepte non nul en termes du cardinal (fini ou non) de l'ensemble des mots de retour abélien par rapport à tous les préfixes. Nous décrivons cet ensemble pour Fibonacci ainsi que pour Thue--Morse (bien que cela ne soit pas un mot sturmien). Nous étudions la relation existante entre la complexité abélienne et le cardinal de cet ensemble. En théorie des graphes, le premier problème considéré traite des codes identifiants dans les graphes. Ces codes ont été introduits par Karpovsky, Chakrabarty et Levitin pour modéliser un problème de détection de défaillance dans des réseaux multiprocesseurs. Le rapport entre la taille optimale d'un code identifiant et la taille optimale du relâchement fractionnaire d'un code identifiant est comprise entre 1 et 2 ln(|V|)+1 où V est l'ensemble des sommets du graphe. Nous nous concentrons sur les graphes sommet-transitifs, car nous pouvons y calculer précisément la solution fractionnaire. Nous exhibons des familles infinies, appelées quadrangles généralisés, de graphes sommet-transitifs pour lesquelles les solutions entière et fractionnaire sont de l'ordre |V|^k avec k dans {1/4, 1/3, 2/5}. Le second problème concerne les (r,a,b)-codes couvrants de la grille infinie déjà étudiés par Axenovich et Puzynina. Nous introduisons la notion de 2-coloriages constants de graphes pondérés et nous les étudions dans le cas de quatre cycles pondérés particuliers. Nous présentons une méthode permettant de lier ces 2-coloriages aux codes couvrants. Enfin, nous déterminons les valeurs exactes des constantes a et b de tout (r,a,b)-code couvrant de la grille infinie avec |a-b|>4. Il s'agit d'une extension d'un théorème d'Axenovich. / This dissertation is divided into two (distinct but connected) parts that reflect the joint PhD. We study and we solve several questions regarding on the one hand combinatorics on words in an abelian context and on the other hand covering problems in graphs. Each particular problem is the topic of a chapter. In combinatorics on words, the first problem considered focuses on the 2-regularity of sequences in the sense of Allouche and Shallit. We prove that a sequence satisfying a certain symmetry property is 2-regular. Then we apply this theorem to show that the 2-abelian complexity functions of the Thue--Morse word and the period-doubling word are 2-regular. The computation and arguments leading to these results fit into a quite general scheme that we hope can be used again to prove additional regularity results. The second question concerns the notion of return words up to abelian equivalence, introduced by Puzynina and Zamboni. We obtain a characterization of Sturmian words with non-zero intercept in terms of the finiteness of the set of abelian return words to all prefixes. We describe this set of abelian returns for the Fibonacci word but also for the Thue-Morse word (which is not Sturmian). We investigate the relationship existing between the abelian complexity and the finiteness of this set. In graph theory, the first problem considered deals with identifying codes in graphs. These codes were introduced by Karpovsky, Chakrabarty and Levitin to model fault-diagnosis in multiprocessor systems. The ratio between the optimal size of an identifying code and the optimal size of a fractional relaxation of an identifying code is between 1 and 2 ln(|V|)+1 where V is the vertex set of the graph. We focus on vertex-transitive graphs, since we can compute the exact fractional solution for them. We exhibit infinite families, called generalized quadrangles, of vertex-transitive graphs with integer and fractional identifying codes of order |V|^k with k in {1/4,1/3,2/5}. The second problem concerns (r,a,b)-covering codes of the infinite grid already studied by Axenovich and Puzynina. We introduce the notion of constant 2-labellings of weighted graphs and study them in four particular weighted cycles. We present a method to link these labellings with covering codes. Finally, we determine the precise values of the constants a and b of any (r,a,b)-covering code of the infinite grid with |a-b|>4. This is an extension of a theorem of Axenovich.

Page generated in 0.1019 seconds