1 |
Diagnostique d'homogénéité et inférence non-paramétrique pour l'analyse de groupe en imagerie par résonance magnétique fonctionnelleMériaux, Sébastien 06 December 2007 (has links) (PDF)
L'un des objectifs principaux de l'imagerie par résonance magnétique fonctionnelle (IRMf) est la localisation in vivo et de manière non invasive des zones cérébrales associées à certaines fonctions cognitives. Le cerveau présentant une très grande variabilité anatomo-fonctionnelle inter-individuelle, les études d'IRMf incluent généralement plusieurs sujets et une analyse de groupe permet de résumer les résultats intra-sujets en une carte d'activation du groupe représentative de la population d'intérêt. L'analyse de groupe « standard » repose sur une hypothèse forte d'homogénéité des effets estimés à travers les sujets. Dans un premier temps, nous étudions la validité de cette hypothèse par une méthode multivariée diagnostique et un test de normalité univarié (le test de Grubbs). L'application de ces méthodes sur une vingtaine de jeux de données révèle la présence fréquente de données atypiques qui peuvent invalider l'hypothèse d'homogénéité. Nous proposons alors d'utiliser des statistiques de décision robustes calibrées par permutations afin d'améliorer la spécificité et la sensibilité des tests statistiques pour l'analyse de groupe. Puis nous introduisons de nouvelles statistiques de décision à effets mixtes fondées sur le rapport de vraisemblances maximales, permettant de pondérer les sujets en fonction de l'incertitude sur l'estimation de leurs effets. Nous confirmons sur des jeux de données que ces nouvelles méthodes d'inférence permettent un gain en sensibilité significatif, et nous fournissons l'ensemble des outils développés lors de cette thèse à la communauté de neuro-imagerie dans le logiciel DISTANCE.
|
2 |
Tests de permutation d’indépendance en analyse multivariéeGuetsop Nangue, Aurélien 11 1900 (has links)
Cette thèse est rédigée par articles. Les articles sont rédigés en anglais et le reste de la thèse est rédigée en français. / Le travail établit une équivalence en termes de puissance entre les tests basés sur la alpha-distance de covariance et sur le critère d'indépendance de Hilbert-Schmidt (HSIC) avec fonction caractéristique de distribution de probabilité stable d'indice alpha avec paramètre d'échelle suffisamment petit. Des simulations en grandes dimensions montrent la supériorité des tests de distance de covariance et des tests HSIC par rapport à certains tests utilisant les copules. Des simulations montrent également que la distribution de Pearson de type III, très utile et moins connue, approche la distribution exacte de permutation des tests et donne des erreurs de type I précises. Une nouvelle méthode de sélection adaptative des paramètres d'échelle pour les tests HSIC est proposée. Trois simulations, dont deux sont empruntées de l'apprentissage automatique, montrent que la nouvelle méthode de sélection améliore la puissance des tests HSIC. Le problème de tests d'indépendance entre deux vecteurs est généralisé au problème de tests d'indépendance mutuelle entre plusieurs vecteurs. Le travail traite aussi d'un problème très proche à savoir, le test d'indépendance sérielle d'une suite multidimensionnelle stationnaire. La décomposition de Möbius des fonctions caractéristiques est utilisée pour caractériser l'indépendance. Des tests généralisés basés sur le critère d'indépendance de Hilbert-Schmidt et sur la distance de covariance en sont obtenus. Une équivalence est également établie entre le test basé sur la distance de covariance et le test HSIC de noyau caractéristique d'une distribution stable avec des paramètres d'échelle suffisamment petits. La convergence faible du test HSIC est obtenue. Un calcul rapide et précis des valeurs-p des tests développés utilise une distribution de Pearson de type III comme approximation de la distribution exacte des tests. Un résultat fascinant est l'obtention des trois premiers moments exacts de la distribution de permutation des statistiques de dépendance. Une méthodologie similaire a été développée pour le test d'indépendance sérielle d'une suite. Des applications à des données réelles environnementales et financières sont effectuées. / The main result establishes the equivalence in terms of power between the alpha-distance covariance test and the Hilbert-Schmidt independence criterion (HSIC) test with the characteristic kernel of a stable probability distribution of index alpha with sufficiently small scale parameters. Large-scale simulations reveal the superiority of these two tests over other tests based on the empirical independence copula process. They also establish the usefulness of the lesser known Pearson type III approximation to the exact permutation distribution. This approximation yields tests with more accurate type I error rates than the gamma approximation usually used for HSIC, especially when dimensions of the two vectors are large. A new method for scale parameter selection in HSIC tests is proposed which improves power performance in three simulations, two of which are from machine learning. The problem of testing mutual independence between many random vectors is addressed. The closely related problem of testing serial independence of a multivariate stationary sequence is also considered. The Möbius transformation of characteristic functions is used to characterize independence. A generalization to p vectors of the alpha -distance covariance test and the Hilbert-Schmidt independence criterion (HSIC) test with the characteristic kernel of a stable probability distributionof index alpha is obtained. It is shown that an HSIC test with sufficiently small scale parameters is equivalent to an alpha -distance covariance test. Weak convergence of the HSIC test is established. A very fast and accurate computation of p-values uses the Pearson type III approximation which successfully approaches the exact permutation distribution of the tests. This approximation relies on the exact first three moments of the permutation distribution of any test which can be expressed as the sum of all elements of a componentwise product of p doubly-centered matrices. The alpha -distance covariance test and the HSIC test are both of this form. A new selection method is proposed for the scale parameter of the characteristic kernel of the HSIC test. It is shown in a simulation that this adaptive HSIC test has higher power than the alpha-distance covariance test when data are generated from a Student copula. Applications are given to environmental and financial data.
|
Page generated in 0.07 seconds