Spelling suggestions: "subject:"tests dde permutation"" "subject:"tests dee permutation""
1 |
Analyse statistique d'évaluations sensorielles au cours du tempsLedauphin, Stéphanie 23 March 2007 (has links) (PDF)
Dans les industries agro-alimentaires ainsi que dans d'autres secteurs d'activités, l'analyse sensorielle est la clé pour répondre aux attentes des consommateurs. Cette discipline est le plus souvent basée sur l'établissement de profils sensoriels à partir de notes attribuées par des juges entraînés selon une liste de descripteurs (variables sensorielles). Dans ce type d'étude, il importe d'étudier la performance des juges et d'en tenir compte dans l'établissement des profils sensoriels. Dans cette perspective, nous proposons une démarche qui permet de procurer des indicateurs de performance du jury et de chacun des juges et de tenir compte de cette performance pour une détermination d'un tableau moyen. Des tests d'hypothèses pour évaluer la significativité de la contribution des juges à la détermination du compromis sont également proposés.<br />Depuis une vingtaine d'années, les courbes temps-intensité (TI) qui permettent de décrire l'évolution d'une sensation au cours de l'expérience sont de plus en plus populaires parmi les praticiens de l'analyse sensorielle. La difficulté majeure pour l'analyse des courbes TI provient d'un effet juge important qui se traduit par la présence d'une signature propre à chaque juge. Nous proposons une approche fonctionnelle basée sur les fonctions B-splines qui permet de réduire l'effet juge en utilisant une procédure d'alignement de courbes.<br />D'autres données sensorielles au cours du temps existent telles que le suivi de la dégradation organoleptique de produits alimentaires. Pour les étudier, nous proposons la modélisation par des chaînes de Markov cachées, de manière à pouvoir ensuite visualiser graphiquement la suivi de la dégradation.
|
2 |
Diagnostique d'homogénéité et inférence non-paramétrique pour l'analyse de groupe en imagerie par résonance magnétique fonctionnelleMériaux, Sébastien 06 December 2007 (has links) (PDF)
L'un des objectifs principaux de l'imagerie par résonance magnétique fonctionnelle (IRMf) est la localisation in vivo et de manière non invasive des zones cérébrales associées à certaines fonctions cognitives. Le cerveau présentant une très grande variabilité anatomo-fonctionnelle inter-individuelle, les études d'IRMf incluent généralement plusieurs sujets et une analyse de groupe permet de résumer les résultats intra-sujets en une carte d'activation du groupe représentative de la population d'intérêt. L'analyse de groupe « standard » repose sur une hypothèse forte d'homogénéité des effets estimés à travers les sujets. Dans un premier temps, nous étudions la validité de cette hypothèse par une méthode multivariée diagnostique et un test de normalité univarié (le test de Grubbs). L'application de ces méthodes sur une vingtaine de jeux de données révèle la présence fréquente de données atypiques qui peuvent invalider l'hypothèse d'homogénéité. Nous proposons alors d'utiliser des statistiques de décision robustes calibrées par permutations afin d'améliorer la spécificité et la sensibilité des tests statistiques pour l'analyse de groupe. Puis nous introduisons de nouvelles statistiques de décision à effets mixtes fondées sur le rapport de vraisemblances maximales, permettant de pondérer les sujets en fonction de l'incertitude sur l'estimation de leurs effets. Nous confirmons sur des jeux de données que ces nouvelles méthodes d'inférence permettent un gain en sensibilité significatif, et nous fournissons l'ensemble des outils développés lors de cette thèse à la communauté de neuro-imagerie dans le logiciel DISTANCE.
|
Page generated in 0.1474 seconds