• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 104
  • 70
  • 47
  • 22
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 322
  • 123
  • 97
  • 94
  • 77
  • 67
  • 63
  • 55
  • 49
  • 45
  • 43
  • 40
  • 38
  • 36
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Social Cohesion Analysis of Networks: A Novel Method for Identifying Cohesive Subgroups in Social Hypertext

Chin, Alvin Yung Chian 23 September 2009 (has links)
Finding subgroups within social networks is important for understanding and possibly influencing the formation and evolution of online communities. This thesis addresses the problem of finding cohesive subgroups within social networks inferred from online interactions. The dissertation begins with a review of relevant literature and identifies existing methods for finding cohesive subgroups. This is followed by the introduction of the SCAN method for identifying subgroups in online interaction. The SCAN (Social Cohesion Analysis of Networks) methodology involves three steps: selecting the possible members (Select), collecting those members into possible subgroups (Collect) and choosing the cohesive subgroups over time (Choose). Social network analysis, clustering and partitioning, and similarity measurement are then used to implement each of the steps. Two further case studies are presented, one involving the TorCamp Google group and the other involving YouTube vaccination videos, to demonstrate how the methodology works in practice. Behavioural measures of Sense of Community and the Social Network Questionnaire are correlated with the SCAN method to demonstrate that the SCAN approach can find meaningful subgroups. Additional empirical findings are reported. Betweenness centrality appears to be a useful filter for screening potential subgroup members, and members of cohesive subgroups have stronger community membership and influence than others. Subgroups identified using weighted average hierarchical clustering are consistent with the subgroups identified using the more computationally expensive k-plex analysis. The value of similarity measurement in assessing subgroup cohesion over time is demonstrated, and possible problems with the use of Q modularity to identify cohesive subgroups are noted. Applications of this research to marketing, expertise location, and information search are also discussed.
62

Investigation into the role of strength and toughness in composite materials with an angled incident crack

Grimm, Brian A. 30 November 2012 (has links)
Understanding the mechanical behavior of composite materials requires extensive knowledge of fracture behavior as a crack approaches an interface between the bulk material and the reinforcement structure. Overall material toughness can be greatly influenced by the propensity of an impinging crack to propagate directly through the substrate or deflect along an interface boundary. As the basis for this thesis; the assertion that an impinging crack may encounter a reinforcement structure at various incident angles is explored. This requires the ability to predict crack penetration/ deflection behavior not only normal to the reinforcement, but at various incident angles. Previous work in the area of interface fracture mechanics has used a stress or energy based approach, with recent advances in the field of a combined cohesive-zone method. Work presented here investigates the interaction between strength and toughness when using the cohesive-zone method on the problem of an impinging crack not normally incident to the interface of a composite material. Computational mechanics methods using Abaqus and user-define cohesive elements will be applied to this angled incident crack problem. A circular model based on the displacement field equations for mode-I fracture loading is introduced and verified against well-established LEFM solutions. This circular model is used to study the effects of incident crack angle on the penetration vs. deflection behavior of an impinging crack at various angles of incidence. Additionally, the effects of angle on the load applied to the model at fracture are explored. Finally, a case study investigating how the interaction between strength and toughness found using the cohesive-zone method helps to explain some of the inconsistencies seen in the interface indentation fracture test procedure. / Graduation date: 2013
63

Experimental studies on the erodibility and transport behaviour of dreissenid mussel deposits in an annular flume

McLean, Kelly January 2011 (has links)
Dreissenid mussels alter particle transport dynamics in the near shore environment of the Great Lakes by intercepting, retaining and recycling suspended solids that might otherwise be exported to the offshore environment (Hecky et al., 2004). Particulate materials filtered from the water column by dreissenids are subsequently released as either feces or pseudofeces (Walz, 1978). This bio-transformation process alters the nature (grain size distribution, settling velocity and density) and transport properties (critical shear stress for erosion, erosion rates and bed stability) of particulate matter in surficial sediments. While knowledge of the transport characteristics of this material is required to refine particle transport dynamics and energy flow models in the Great Lakes, few studies have been specifically conducted to directly quantify these processes. An annular flume was used to determine the bed stability, rate of erosion and critical shear stress for erosion of dreissenid biodeposits. Materials studied in the flume consisted of 1) a combination of biodeposits and surface sediments collected from dreissenid beds and 2) biodeposits harvested in a weir box with dreissenids. The results show that erosion characteristics and sediment transport properties were strongly influenced by bed age; however particle sizes did not increase in the presence of mussels as originally speculated. Bed stability increased after 7 days, with a τcrit of 0.26 Pa compared to the 2 and 14 day consolidation periods (τcrit= 0.13 and 0.15 Pa respectively). In 2010, following a 2 day consolidation period, pure biodeposits harvested in the weir box had a critical shear stress for erosion of 0.052 Pa. The decrease in bed stability found in biodeposits from 2010 compared to the 2008 biodeposit mixture, may be a result of a more diffuse biofilm developing on the highly organic substrate. The mixture of biodeposits collected in 2008 were a combination organic and inorganic materials which may be creating a nutrient limited environment, where biofilm structure consists of more tightly organized biofilm cells and as a result enhance stability in the bed sediments. The decrease observed after 14 days is likely a result of the microbes depleting their resources and dying off. Due to the added roughness the mussels created in the flume, τcrit could not be measured and critical revolutions per minute (RPM) for erosion are reported for flume runs with mussels. During experiments conducted in 2009 with pure biodeposits and mussels the critical RPM was 5.83 while in 2010 in the presence of mussels a critical RPM was not observed. Settling experiments found biodeposits from both years (2008 and 2010) had decreased settling velocities when compared to different sediment types from lacustrine environments. I speculate that the added enrichment of the surficial sediments by mussel biodeposits is enhancing the process of biostabilization and increasing the bed stability and that the presence mussels themselves may additionally be enhancing bed stability by inhibiting flow from reaching the surface sediments/biodeposits.
64

Experimental Study of Bridge Scour in Cohesive Soil

Oh, Seung Jae 2009 December 1900 (has links)
The bridge scour depths in cohesive soil have been predicted using the scour equations developed for cohesionless soils due to scarce of studies about cohesive soil. The scour depths predicted by the conventional methods will result in significant errors. For the cost effective design of bridge scour in cohesive soil, the Scour Rate In COhesvie Soil (SRICOS) for the singular circular pier in deep water condition was released in 1999, and has been developed for complex pier and contraction scour. The present study is the part of SRICOS-EFA method to predict the history of contraction scour, and local scours, such as abutment scour and pier scour. The main objective is to develop the prediction methods for the maximum and the uniform contraction scour depth, the maximum pier scour depth and the maximum abutment using flume test results. The equations are basically composed with the difference between the local Froude number and the critical Froude number. Because the scour happens when the shear stress is bigger than the critical shear stress, which is the maximum shear stress the channel bed material can resist from the erosion, and continues until the shear stress becomes equal to the critical shear stress. All results obtained from flume tests for pier scour have been conducted in Texas A&M University from 1997 to 2002 are collected and reanalyzed in this study. Since the original pier scour equation did not include soil properties. The effect of water depth effect, pier spacing, pier shape and flow attack angle for the rectangular pier are studied and correction factors with respect to the circular pier in deep water condition were newly developed in present study. For the abutment scour, a series of flume tests in large scale was performed in the present study. Two types of channel - rectangular channel, and compound channel - were used. The effect of abutment length, shape and alignment of abutment were studied and the correction factors were developed. The patterns of velocity and of scour were compared, and it was found that the maximum local scour occurred where the maximum turbulence was measured. For the contraction scour, the results obtained from a series of flume tests performed in 2002 and a series of flume tests for the abutment scour in the present study are analyzed. The methodologies to predict the maximum contraction scour and the uniform contraction scour in the compound channel was developed. Although all prediction methods developed in the present study are for the cohesive soils, those methods may be applicable to the cohesionless soils because the critical shear stress is included in the methods. All prediction methods were verified by the comparison with the databases obtained from flume test results and field data.
65

An Atomistic Study of the Mechanical Behavior of Carbon Nanotubes and Nanocomposite Interfaces

Awasthi, Amnaya P. 2009 December 1900 (has links)
The research presented in this dissertation pertains to the evaluation of stiffness of carbon nanotubes (CNTs) in a multiscale framework and modeling of the interfacial mechanical behavior in CNT-polymer nanocomposites. The goal is to study the mechanical behavior of CNTs and CNT-polymer interfaces at the atomic level, and utilize this information to develop predictive capabilities of material behavior at the macroscale. Stiffness of CNTs is analyzed through quantum mechanical (QM) calculations while the CNT-polymer interface is examined using molecular dynamics (MD) simulations. CNT-polymer-matrix composites exhibit promising properties as structural materials and constitutive models are sought to predict their macroscale behavior. The reliability of determining the homogenized response of such materials depends upon the ability to accurately capture the interfacial behavior between the nanotubes and the polymer matrix. In the proposed work, atomistic methods are be used to investigate the behavior of the interface by utilizing appropriately chosen atomistic representative volume elements (RVEs). Atomistic simulations are conducted on the RVEs to study mechanical separation with and without covalent functionalization between the polymeric matrix and two filler materials, namely graphite and a (12,0) Single Wall zig zag CNT. The information obtained from atomistic studies of separation is applicable for higher level length scale models as cohesive zone properties. The results of the present research have been correlated with available experimental data from characterization efforts.
66

Modeling of crack tip high inertia zone in dynamic brittle fracture

Karedla-Ravi, Shankar 17 September 2007 (has links)
A phenomenological cohesive term is proposed and added to an existing cohesive constitutive law (by Roy and Dodds) to model the crack tip high inertia region proposed by Gao. The new term is attributed to fracture mechanisms that result in high energy dissipation around the crack tip and is assumed to be a function of external energy per volume input into the system. Finite element analysis is performed on PMMA with constant velocity boundary conditions and mesh discretization based on the work of Xu and Needleman. The cohesive model with the proposed dissipative term is only applied in the high inertia zone i.e., to cohesive elements very close to the crack tip and the traditional Roy and Dodds model is applied on cohesive elements in the rest of the domain. It was observed that crack propagated in three phases with a speed of 0.35cR before branching, which are in good agreement with experimental observations. Thus, modeling of high inertia zone is one of the key aspects to understanding brittle fracture.
67

Numerical Study of Abutment Scour in Cohesive Soils

Chen, Xingnian 16 January 2010 (has links)
This research is part of the extension of the SRICOS-EFA method for predicting the maximum scour depth history around the bridge abutment. The basic objective is to establish the equation for predicting the maximum bed shear stress around the abutment at the initial condition of scouring. CHEN3D (Computerized Hydraulic ENgineering program for 3D flow) program is utilized to perform numerical simulations and predict bed shear stress before scouring. The Chimera technique incorporated in CHEN3D makes the program capable of simulating all kinds of complex geometry and moving boundary. CHEN3D program has been proven to be an accurate method to predict flow field and boundary shear stress in many fields and used in bridge scour study in cohesive soils for more than ten years. The maximum bed shear stress around abutment in open rectangular channel is studied numerically and the equation is proposed. Reynolds number is the dominant parameter, and the parametric studies have been performed based on the dimensional analysis. The influence of channel contraction ratio, abutment aspect ratio, water depth, abutment shape, and skew angle has been investigated, and the corresponding correction This research is part of the extension of the SRICOS-EFA method for predicting the maximum scour depth history around the bridge abutment. The basic objective is to establish the equation for predicting the maximum bed shear stress around the abutment at the initial condition of scouring. CHEN3D (Computerized Hydraulic ENgineering program for 3D flow) program is utilized to perform numerical simulations and predict bed shear stress before scouring. The Chimera technique incorporated in CHEN3D makes the program capable of simulating all kinds of complex geometry and moving boundary. CHEN3D program has been proven to be an accurate method to predict flow field and boundary shear stress in many fields and used in bridge scour study in cohesive soils for more than ten years. The maximum bed shear stress around abutment in open rectangular channel is studied numerically and the equation is proposed. Reynolds number is the dominant parameter, and the parametric studies have been performed based on the dimensional analysis. The influence of channel contraction ratio, abutment aspect ratio, water depth, abutment shape, and skew angle has been investigated, and the corresponding correction factors have been proposed. The study of the compound channel configuration is conducted further to extend the application of the proposed equation. Numerical simulations of overtopping flow in straight rectangular channel, straight compound channel and channel bend have been conducted. The bridge deck is found to be able to change the flow distribution and the bed shear stress will increase significantly once overtopping. The influence of the channel bend curvature, abutment location in the channel bend, and the abutment shape is also investigated. The corresponding variation of the bed shear stress has been concluded. The scour models, including the erosion rate function, roughness effect, and the turbulence kinetic energy, have been proposed and incorporated into the CHEN3D program. One flume test case in NCHRP 24-15(2) has been simulated to determine the parameters for the roughness and the turbulence kinetic energy. The prediction of the maximum scour depth history with the proposed model is in good agreement with the measurement for most cases. The influence of overtopping flow on the abutment scour development is also studied and the corresponding correction factor is proposed.
68

Implementation of a robust solver for predicting highly localized deformations in microelectronics

Bouquet, Jean-Baptiste 24 May 2011 (has links)
Fracture of polymer-metal interfaces is one of the main failure modes occurring in micro-electronic components. This phenomenon is particularly true when considering the delamination of several layers of an interconnect structure. In order to predict the failure nucleation and the crack propagation into the composite material, the finite element analysis is one of the key procedures. Even though simple linear models have been considered for years, we are now facing the necessity of using more complex models including non-linearity which can occur, in this case, with the presence of high local stresses near the crack front. However, the computational time can sometimes be incredibly long. Moreover, the fact that the considered materials are quasi-brittle brings some numerical difficulties such as sharp snap-back and snap-through. The actual challenge resides in obtaining a reliable result in a reasonable time of calculation. The present work considers the implementation of a new non-linear finite element solver, developed for the MSc. Marc/Mentat package software. It is based on a general arc-length constraint which considers the energy released during the propagation of the crack. This offers the advantage of being directly linked to the failure process, and no previous knowledge of the failure behavior is required. The models considered in this work represent the simulation of crack propagations in multilayer electronic systems, such as SIP devices, and are based on a cohesive zone approach. In order to clearly understand the issues of this problem, this work includes a brief description of the fracture mechanics and reviews the existing nonlinear finite element solvers. After explaining the principle of the energy release solver and the different issues due to its implementation, its efficiency is compared to pre-implemented solvers, such as the Crisfield method. The results show a significant improved robustness of the new energy released method compared to the previous arc-length methods.
69

Fracture and delamination of elastic thin films on compliant substrates : modeling and simulations

Mei, Haixia 21 October 2011 (has links)
Different fracture modes have been observed in thin film structures. One common approach used in fracture analysis is based on the principle of linear elastic fracture mechanics (LEFM), which assumes pre-existing cracks and treats the materials as linear elastic except for the damage zone around the crack tip. Alternatively, a nonlinear cohesive zone model (CZM) can be used to simulate both nucleation and growth of cracks. In this dissertation, the approaches of LEFM and CZM are employed to study fracture and delamination of elastic thin films on compliant substrates under various loading conditions. First, compression-induced buckling of elastic thin films on elastic compliant substrates is studied by analytical and numerical methods. The critical condition for onset of buckling instability without and with a pre-existing delamination crack is predicted. By comparing the critical strains, a map for the initial buckling modes is constructed with respect to the film/substrate stiffness ratio and the interfacial defect size. For an elastic film on a highly compliant substrate, nonlinear post-buckling analysis is conducted to simulate concomitant wrinkling and buckle-delamination, with a long-range interaction between the two buckling modes through the compliant substrate. By using a layer of cohesive elements for the interface, progressive co-evolution of wrinkling and delamination is simulated. In particular, the effects of interfacial properties (strength and toughness) on the initiation and propagation of wrinkle-induced interfacial delamination are examined. Next, using a set of finite element models, the effects of interfacial delamination and substrate penetration on channel cracking of brittle thin films are analyzed. It is found that, depending on the elastic mismatch and the toughness of interface and substrate, a channel crack may grow with interfacial delamination and/or substrate cracking. By comparing the effective energy release rates, the competition between the two fracture modes is discussed. Cohesive zone modeling is then employed to simulate nucleation and growth of delamination and penetration from the root of a channel crack. By comparing the results from the approaches of LEFM and CZM, the characteristic fracture resistance from small-scale bridging to large-scale bridging is identified. Finally, to determine the nonlinear traction-separation relation for cohesive zone modeling of a bimaterial interface, a hybrid approach is developed by combining experimental measurements and finite element simulations. In particular, both analytical and numerical models for wedge-loaded double cantilever beam specimens are developed. A two-step fitting procedure is proposed to determine the interface toughness and strength based on the measurements of the steady-state crack length and the local crack opening displacements. / text
70

The Effect of Coarse Gravel on Cohesive Sediment Entrapment in an Annular Flume

Glasbergen, Kenneth January 2014 (has links)
The amount and type of cohesive sediment found in gravel river beds can have important implications for the health of aquatic biota, surface/groundwater interactions and water quality. Due to landscape disturbances in the Elbow River watershed, increased sediment fluxes have negatively impacted fish habitat, water quality and water supply to the City of Calgary. However, little is known about the source of cohesive sediment and its interaction with gravel deposits in the Elbow River. This research was designed to: 1) quantify the transport properties (critical shear stress for erosion, deposition, porosity, settling velocity, density) of cohesive sediment and 2) evaluate the potential for coarse gravel to entrap cohesive sediment in the Elbow River. A 5m annular flume was used to conduct erosion and deposition experiments using plane and coarse bed conditions. The critical shear stress for deposition and erosion of the Elbow River cohesive sediments was 0.115Pa and 0.212Pa, respectively. The settling velocity of the cohesive sediment had an inverse relationship between floc size and settling velocity for larger flocs, due to a decrease in floc density with increased size. Cohesive sediment moved from the water column into the gravel bed via the coupling of surface and pore water flow. Once in the gravel bed, cohesive sediments were not mobilized from the bed because the shear produced by the flume was less than the critical shear to mobilize the gravel bed. Using a model developed by Krishnappan and Engel (2006), an entrapment coefficient of 0.2 was determined for the gravel bed. Entrapment coefficients were plotted against substrate size, porosity and hydraulic conductivity, demonstrating a relationship between entrapment coefficient and these variables. It was estimated that 864kg of cohesive sediment is stored in the upper 0.08m of a partially submerged point bar in the Elbow River. Accordingly, when flow conditions are sufficient to mobilize the gravel bed and disturb the amour layer, cohesive materials may be entrained and transported into the Glenmore Reservoir, where it will reduce reservoir capacity and may pose treatment challenges to the drinking water supply.

Page generated in 0.032 seconds