• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 58
  • 22
  • 14
  • 5
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 119
  • 60
  • 51
  • 33
  • 22
  • 18
  • 14
  • 14
  • 13
  • 12
  • 12
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Cholinergic circuitry in auditory brainstem

Motts, Susan D. 22 November 2010 (has links)
No description available.
72

The Roles of Auditory Brainstem Structures in Analysis of Complex Sounds

Yavuzoglu, Asuman 24 November 2010 (has links)
No description available.
73

Perineuronal nets and the inhibitory circuitry of the auditory midbrain: evidence for subtypes of GABAergic neurons

Beebe, Nichole L. 26 July 2016 (has links)
No description available.
74

Monaural and Binaural Response Properties of Duration-Tuned Neurons in the Big Brown Bat

Sayegh, Riziq 10 1900 (has links)
<p>Neurons throughout the auditory pathway respond selectively to the frequency and amplitude of sound. In the auditory midbrain there exists a class of neurons that are also selective to the duration of sound. These duration-tuned neurons (DTNs) provide a potential neural mechanism underlying temporal processing in the central nervous system. Temporal processing is necessary for human speech, discriminating species-specific acoustic signals as well as echolocation. This dissertation aims to explore the role and underlying mechanisms of DTNs through single-unit in vivo electrophysiological recordings in the auditory midbrain of the big brown bat. The durations that DTNs are selective to in echolocating and non-echolocating species are first compared to the durations of each species vocalizations. This comparison reveals that the durations DTNs respond best to correlates to the durations of echolocation calls in echolocating species and to species-specific communication calls in non-echolocating species. The ability of DTNs in the bat to respond to stimulus parameters thought to be important for echolocation processing, such as pairs of pulses and binaural sound localization cues, are subsequently tested. The responses of DTNs to a paired tone spike suppressing paradigm presented monaurally and binaurally are also compared to characterize the role each ear plays in recruiting inhibition known to be involved in duration tuning. The results show that DTNs are able to respond to pairs of pulses at a timescale relevant to bat echolocation, and a majority also responded selectively to binaural sound localizing cues. Nearly half (48%) of DTNs did not show spike suppression to an ipsilaterally presented suppressing tone. When ipsilaterally evoked spike suppression occurred, the effect was significantly smaller than the suppression evoked by a contralateral suppressing tone. These findings provide evidence that DTNs may play a role in echolocation in bats as DTNs are able to respond to the outgoing pulse and returning echoes and localize the echo source and that the neural mechanism underlying duration tuning is monaural in nature.</p> / Doctor of Philosophy (PhD)
75

Frequency response of binaural inhibition underlying duration tuned neurons

Mastroieni, Robert January 2017 (has links)
Auditory neurons selectively respond to frequency and amplitude of sound. In the auditory midbrain, duration-tuned neurons (DTNs) are subsets of neurons that selectively respond to the duration of sound. DTNs may help further understand the neural mechanism underlying temporal processing in the central nervous system. Temporal processing has been shown to play important roles in speech, discriminating species-specific signals, and echolocation. The goal of this thesis is to explore the role of DTNs through single-unit electrophysiological recordings in the auditory midbrain of the big brown bat (Eptesicus fuscus). Monotic and dichotic paired-tone stimulation was used to evoke excitatory and inhibitory responses from DTNs. Two stimuli consisted of best duration (BD) excitatory and non-excitatory (NE) tones. In the monotic condition, both tones were presented to the contralateral ear, and when they were close in time, the NE tone always suppressed spikes evoked by the BD tone. In the dichotic condition, the BD tone was presented to the contralateral ear. The NE tone was presented to the ipsilateral ear and suppressed BD tone evoked spiking in ~50% of cells. Properties of the ipsilaterally-evoked inhibition were investigated by varying the frequency of the NE tone from the best excitatory frequency (BEF), throughout a cell’s excitatory bandwidth (eBW). We measured the inhibitory frequency response area, best inhibitory frequency (BIF), and inhibitory bandwidth (iBW) of each cell. We found inhibition became weaker as the frequency of the NE tone moved further from the middle of the eBW. We found that a DTN’s BEF and BIF closely matched, but the eBW was broader than the iBW and overlapped the iBW measured from the same cell. This suggests temporal selectivity of midbrain DTNs are created by monaural inputs, with binaural inputs playing a lesser role in shaping duration selectivity. / Thesis / Master of Science (MSc)
76

Sensitivity to interaural onset time differences of high frequency stimuli in the inferior colliculus of Eptesicus fuscus / Interaural onset time differences in the bat

Haqqee, Zeeshan January 2018 (has links)
Many neurons in the auditory midbrain are tuned to binaural cues. Two prominent binaural cues are the interaural intensity difference (IID) and the interaural time difference (ITD). The ITD cue can further be classified as either an ongoing ITD, which compares the phase difference in the waveform of low frequency stimuli present at either ear, or an onset ITD, which compares the onset time of arrival of two stimuli at either ear. Little research has been done on the sensitivity of single neurons to onset ITDs in the auditory system, particularly in bats. The current study examines the response properties of neurons in the inferior colliculus (IC) of the big brown bat, Eptesicus fuscus, to onset ITDs in response to high frequency pure tones. Measures of neurons’ dynamic response—the segment of the ITD function exhibiting the highest rate of change in activity—revealed an average change of 36% of its maximum response within the estimated behaviorally relevant range of ITDs. Time-intensity trading describes the ability of the brain to compensate the binaural time cue (ITD) cue for the binaural intensity cue (IID) and can be measured as the horizontal shift of an ITD function at various IIDs. Across all IC neurons, an average time-intensity trading ratio of 30 μs/dB was calculated to measure the sensitivity of IC neurons’ ITD response to changing IIDs. Minimum and maximum ITD responses were found to be clustered within a narrow range of ITDs. The average peak ITD response occurred at 268 μs and is consistent with findings in other mammals. All results in ITD tuning, time-intensity trading, and response maximum were invariant to stimulus frequency, confirming that IC neurons responded to onset ITDs and not ongoing ITDs. These results suggest the potential for high frequency onset cues to assist in the azimuthal localization of sound in echolocating bats. / Thesis / Master of Science (MSc)
77

Etude des mécanismes de génération des mouvements saccadiques chez l'homme : effets des propriétés de la configuration visuelle sur la latence et la métrique des saccades

Casteau, Soazig 02 April 2012 (has links)
Les saccades sont de brefs mouvements des yeux dont le but est d'amener les objets visuels périphériques sur la partie fovéale de la rétine. L'ensemble des modèles considère que la programmation de la métrique des saccades reflète tout d'abord le codage spatial distribué au sein du colliculus supérieur (CS), et n'est qu'ensuite modulée par des processus cognitifs endogènes. La majorité considère que les interactions latérales entre les neurones du CS (locales et excitatrices ou distantes et inhibitrices) déterminent où mais aussi quand les yeux bougent. Nos études visaient à (1) tester et préciser la relation entre codage spatial distribué et métrique des saccades, (2) re-examiner si des stratégies visuelles peuvent déterminer cette métrique, et (3) tester le rôle des interactions latérales. Elles reposaient sur l'enregistrement des mouvements oculaires de participants humains lors de la visée d'une cible visuelle, présentée seule ou accompagnée d'un distracteur. Nos résultats ont confirmé l'hypothèse de codage spatial distribué ; les champs d'intégration spatiale estimés à partir de la distance maximale entre deux stimuli pour l'exécution d'une saccade vers une position intermédiaire (ou effet global; Findlay, 1982) présentent des propriétés similaires aux champs récepteurs des neurones du CS. Deuxièmement, en désaccord avec l'hypothèse générale, des stratégies visuelles peuvent aussi amener le regard au centre de gravité. Enfin, contrairement à l'hypothèse d'interactions latérales, l'effet d'un distracteur sur la latence des saccades (Walker et al., 1997) est indépendant de la distance qui le sépare de la cible. / Saccades are brief movements of the eyes which bring peripheral visual objects onto the central, foveal part of the retina for detailed visual analysis. All models assume that the programming of saccade metrics primarily reflects distributed spatial coding in the Superior Colliculus (SC), and is only modulated by cognitive, endogenous processes. Furthermore, the majority of models rely on the assumption that lateral interactions between collicular neurons (local and excitatory or distant and inhibitory) are responsible for both where and when the eyes move. The present studies aimed at (1) testing and specifying the relationship between distributed spatial coding and saccade metrics, (2) re-examining the role of visual strategies on saccade metrics, and (3) testing the role of lateral interactions. To this aim, humans' eye movements were recorded in saccade-target tasks, in which the target was presented with or without a distractor stimulus. Results first confirmed the distributed spatial-coding hypothesis by showing that spatial-integration fields as estimated by the maximal distance between two stimuli for the eyes to move to an intermediate location (or global effect; Findlay, 1982) share the same properties as the receptive fields of collicular neurons. Second, in contradiction with the general assumption, visual strategies can also take the eyes to the centre of gravity of the global visual configuration. Third, contrary to the lateral-interaction hypothesis, the effect of a distractor on saccade latency (Walker et al., 1997) is independent of its distance to the target.
78

La vision aveugle suite à une ablation partielle du cortex visuel primaire : une étude en imagerie par résonance magnétique fonctionnelle

Tran, Van Minh Antonin 06 1900 (has links)
No description available.
79

Réadaptation et performance visuelle chez la personne hémianopsique : une étude de cas portant sur les saccades oculaires et le blindsight

Hadid, Vanessa 08 1900 (has links)
No description available.
80

Mise au point du système vibrissal du robot-rat Psikharpax et contribution à la fusion de ses capacités visuelle, auditive et tactile

N'Guyen, Steve 23 September 2010 (has links) (PDF)
La perception de l'environnement à travers différentes modalités sensorielles est une capacité essentielle à la survie des animaux. La compréhension du fonctionnement de ces différentes modalités ainsi que du mécanisme de leur intégration en une représentation unique est un enjeu majeur en neurosciences ainsi qu'en matière de conception d'architectures de contrôle de robots autonomes. Le rat, par exemple, exploite énormément les informations tactiles fournies par ses vibrisses. Elles lui servent notamment à reconnaître des textures ou des formes, comme à évaluer la taille d'une ouverture... Cette modalité, très étudiée en biologie, n'a été que peu abordée dans le domaine de la robotique. L'audition et la vision fournissent également de riches informations sur l'environnement et ces trois modalités fonctionnent de manière complémentaire. Une des structures intégrant toutes ces modalités est le colliculus supérieur, région sous-corticale commune à la plupart des vertébrés. Cette structure fonctionnant comme un système attentionnel, permet de détecter les stimuli pertinents et de s'orienter vers ceux-ci tout en ignorant les stimuli inutiles. L'objectif de ce travail est de développer les différentes capacités sensorielles (tactile, auditive et visuelle) du robot-rat Psikharpax et de les intégrer en une représentation multi-sensorielle en s'inspirant de ces connaissances biologiques. Nous avons tout d'abord développé un système vibrissal artificiel permettant de reconnaitre des textures sur un robot mobile. Nous avons montré que deux hypothèses biologiques s'affrontant pour expliquer le codage des informations tactiles sont peut-être compatibles. Nous avons ensuite collaboré au développement d'un système auditif binaural permettant la localisation et la séparation de sources. Nous avons montré que les mécanismes permettant la reconnaissance de textures avec le système vibrissal, permettait de reconnaitre des sons avec le système auditif. Puis nous avons développé un système d'attention visuelle en adaptant et en intégrant des modèles neuro-mimétiques de colliculus supérieur et de ganglions de la base avec un mécanisme d'apprentissage par renforcement. Ce modèle inclut des boucles sous-corticales et corticales permettant l'apprentissage des caractéristiques spatiales et non-spatiales des stimuli. Nous avons montré que ce système permettait de générer des saccades oculaires vers des cibles génératrices de récompense. Enfin, nous avons étendu ce modèle d'attention visuelle aux modalités tactile et auditive et montré ses capacités à reproduire les phénomènes d'intégration multi-sensorielle. Nous avons également utilisé ce modèle sur un robot mobile pour générer des comportements d'orientation vers des stimuli multi-sensoriels associés à des récompenses. Nous concluons que ce modèle permet la gestion de stimuli multi-sensoriels de manière assez robuste pour être utilisé sur un robot mobile. Il génère de plus quelques prédictions testables.

Page generated in 0.0547 seconds