• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 420
  • 73
  • 42
  • 33
  • 25
  • 18
  • 18
  • 18
  • 18
  • 18
  • 18
  • 10
  • 5
  • 4
  • 4
  • Tagged with
  • 745
  • 102
  • 78
  • 66
  • 61
  • 56
  • 55
  • 53
  • 51
  • 48
  • 43
  • 41
  • 39
  • 34
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Synthesis and characterisation of polypyrrole-coated latexes

Cairns, Dean Barrie January 1999 (has links)
No description available.
82

Solution and adsorption properties of hydrophobically modified hydroxyethyl cellulose

Tanaka, Ryohei January 1992 (has links)
No description available.
83

Use of ultrasound to characterise polymer induced flocculation

Hibberd, David January 1997 (has links)
No description available.
84

Atomic force microscopy and tip-surface interactions

Jarvis, Suzanne Philippa January 1993 (has links)
No description available.
85

Sol-gel synthesis of nanosized sodium potassium niobate-based piezoelectric ceramics

O'Callaghan, Samantha Ann January 2014 (has links)
No description available.
86

Novel valine-based organogelators and their gelation behaviors.

January 2005 (has links)
Cheng Chin-Ho. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 93-100). / Abstracts in English and Chinese. / Table of content --- p.ii / Acknowledgements --- p.ix / Abstract (English) --- p.x / Abstract (Chinese) --- p.xi / Abbreviations --- p.xii / Chapter Chapter 1 - --- Introduction / Chapter 1-1 --- Definition of gels --- p.1 / Chapter 1-2 --- Organogels and organogelators --- p.3 / Chapter 1-3 --- Characterization of organogels and organogelators --- p.5 / Chapter 1-4 --- Classes of organogelators --- p.10 / Chapter 1-5 --- Applications --- p.17 / Chapter 1-6 --- Origin of research project --- p.20 / Chapter Chapter 2 - --- Synthesis and Characterization / Chapter 2-1 --- Structural modification of the Lead compound --- p.22 / Chapter 2-2 --- Retrosynthetic analysis --- p.23 / Chapter 2-3 --- Synthesis --- p.26 / Chapter 2-4 --- Characterization of the target compounds --- p.32 / Chapter 2-4-1 --- NMR spectrometry --- p.32 / Chapter 2-4-2 --- Mass spectrometry --- p.37 / Chapter 2-4-3 --- Elemental analysis --- p.38 / Chapter 2-4-4 --- Melting point determination --- p.39 / Chapter 2-4-5 --- Optical polarimetry --- p.40 / Chapter Chapter 3 - --- Investigation of Gelation Behaviors / Chapter 3-1 --- Gelation behaviors of bis-(urea valine) ethyl esters --- p.41 / Chapter 3-2 --- Gelation behaviors of bis-(urea valine) benzyl esters --- p.43 / Chapter 3-3 --- Effect of lengths of hydrocarbon chains on gelation behaviors --- p.46 / Chapter 3-4 --- Effect of ester protecting group on gelation behaviors --- p.47 / Chapter 3-5 --- Conclusions --- p.48 / Chapter Chapter 4 - --- Elucidation of Gelation Mechanisms / Chapter 4-1 --- FT-IR Spectroscopy --- p.49 / Chapter 4-2 --- Thermotropic behavior --- p.52 / Chapter 4-3 --- Morphological behavior --- p.54 / Chapter 4-4 --- Chiroptical behavior --- p.57 / Chapter 4-5 --- Conclusions --- p.58 / Chapter Chapter 5 - --- Summary --- p.59 / Chapter Chapter 6 - --- Experimental --- p.61 / References --- p.93 / Appendix NMR spectra / 1H NMR of (Boc-NH-V)2-Ar-C02Et 23 --- p.101 / 13C NMR of(Boc-NH-V)2-Ar-C02Et 23 --- p.102 / HNMR of (H2N-V)2-Ar-CO2Et 26 --- p.103 / 13C NMR of(H2N-V)2-Ar-CO2Et 26 --- p.104 / "1H NMR of 3,5-Di(tert-butylcarbonylamino)benzoic acid 36" --- p.105 / "13C NMR of 3,5-Di(tert-butylcarbonylamino)benzoic acid 36" --- p.106 / "1H NMR of Benzyl 3,5-di(tert-butylcarbonylamino)benzoate 37" --- p.107 / "13C NMR of Benzyl 3,5-di(tert-butylcarbonylamino)benzoate 37" --- p.108 / "1H NMR of Benzyl 3,5-diaminobenzoate 38" --- p.109 / "13C NMR of Benzyl 3,5-diaminobenzoate 38" --- p.110 / 1H NMR of(Boc-NH-V)2-Ar-CO2Bn 29 --- p.111 / 13C NMR of(Boc-NH-V)2-Ar-CO2Bn 29 --- p.112 / 1H NMR of (H2N-V)2-Ar-CO2Bn 30 --- p.113 / 13C NMR of (H2N-V)2-Ar-CO2Bn 30 --- p.114 / 1H NMR of O-Succinimidyl butylcarbamate 27a --- p.115 / 13C NMR of O-Succinimidyl butylcarbamate 27a --- p.116 / 1H NMR of O-Succinimidyl pentylcarbamate 27b --- p.117 / 13C NMR of O-Succinimidyl pentylcarbamate 27b --- p.118 / 1H NMR of O-Succinimidyj hexylcarbamate 27c --- p.119 / 13C NMR of O-Succinimidyl hexylcarbamate 27c --- p.120 / 1H NMR of O-Succinimidyl heptylcarbamate 27d --- p.121 / 13C NMR of O-Succinimidyl heptylcarbamate 27d --- p.122 / 1H NMR of O-Succinimidyl decylcarbamate 27e --- p.123 / 13C NMR of O-Succinimidyl decylcarbamate 27e --- p.124 / 1H NMR of O-Succinimidyl undecylcarbamate 27f --- p.125 / 13C NMR of O-Succinimidyl undecylcarbamate 27f --- p.126 / NMR of O-Succinimidyl tridecylcarbamate 27g --- p.127 / 13C NMR of O-Succinimidyl tridecylcarbamate 27g --- p.128 / 1H NMR of O-Succinimidyl hexadecylcarbamate 27h --- p.129 / 13C NMR of O-Succinimidyl hexadecylcarbamate 27h --- p.130 / 1H NMR of O-Succinimidyl nonadecylcarbamate 27i --- p.131 / 13C NMR of O-Succinimidyl nonadecylcarbamate 27i --- p.132 / 1H NMR of O-Succinimidyl heneicosylcarbamate 27j --- p.133 / 13C NMR of O-Succinimidyl heneicosylcarbamate 27j --- p.134 / 1H NMR of (n-C4H9-NHCONH-V)2-Ar-CO2Et 24a --- p.135 / 13C NMR of (n-C4H9-NHC0NH-V)2-Ar-CO2Et 24a --- p.136 / 1H NMR of (n-C5H11-NHCONH-V)2-Ar-C02Et 24b --- p.137 / 13C NMR of (N-C5H11-NHCONH-V)2-Ar-C02Et 24b --- p.138 / HNMR 0f(N-C6H13-NHC0NH-V)2-Ar-C02Et24c --- p.139 / 13C NMR of (n-C6H13-NHC0NH-V)2-Ar-C02Et 24c --- p.140 / HNMR of (n-C7H 15-NHCONH-V)2-Ar-C02Et 24d --- p.141 / 13C NMR of (n-C7H15-NHC0NH-V)2-Ar-C02Et 24d --- p.142 / 1H NMR of (n-C10H21-NHCONH-V)2-Ar-G02Et 24e --- p.143 / "13C NMR of(n-C10H21,-NHCONH-V)2-Ar-CO2Et 24e" --- p.144 / HNMR of (n-C11 H23-NHC0NH-V)2-Ar-C02Et 24f --- p.145 / 13C NMR 0f (n-C23H23-NHC0NH-V)2-Ar-C02Et 24f --- p.146 / HNMR of (n-Cl3H27-NHC0NH-V)2-Ar-C02Et 24g --- p.147 / 13C NMR of (n-C13H27-NHC0NH-V)2-Ar-C02Et 24g --- p.148 / 1H NMR of (n-C16H33-NHC0NH-V)2-Ar-C02Et 24h --- p.149 / 13C NMR of (n-C16H33-NHC0NH-V)2-Ar-C02Et 24h --- p.150 / 1H NMR of (n-C19H39-NHC0NH-V)2-Ar-C02Et 24i --- p.151 / 13C NMR of (n-C19H39-NHCONH-V)2-Ar-C02Et 24i --- p.152 / 1H NMR of (n-C21 H43-NHC0NH-V)2-Ar-C02Et 24j --- p.153 / 13C NMR of (^-C2iH43-NHC0NH-V)2-Ar-C02Et 24j --- p.154 / HNIVIR of (n-C4H9-NHC0NH-V)2-Ar-C02Bn 25a --- p.155 / 13C NMR of (n-C4H9-NHC0NH-V)2-Ar-C02Bn 25a --- p.156 / 1H NMR of(n-C5H11-NHC0NH-V)2-Ar-C02Bn 25b --- p.157 / 13C NMR of (n-C5H11-NHC0NH-V)2-Ar-C02Bn 25b --- p.158 / 1H NMR of(n--C6H13-NHC0NH-V)2-Ar-C02Bn 25c --- p.159 / 13C NMR of OC6Hl3-NHC0NH-V)2-Ar-C02Bn 25c --- p.160 / 1H NMR of(n-C7H15-NHC0NH-V)2-Ar-C02Bn 25d --- p.161 / 13C NMR of(n- C7H15-NHC0NH-V)2-Ar-C02Bn 25cl --- p.162 / 1H NMR of(n--C10H21-NHCONH-V)2-Ar-C02Bn 25e --- p.163 / 13C NMR of (n-C10H21NHCONH-V)2-Ar-C02Bn 25e --- p.164 / HNMR of(n-C11H23-NHC0NH-V)2-Ar-C02Bn 25f --- p.165 / 13C NMR of(n-C11H23-NHC0NH-V)2-Ar-C02Bn 25f --- p.166 / 1H NMR of(n-Cl3H27-NHC0NH-V)2-Ar-C02Bn 25g --- p.167 / 13C NMR of (n-C13H27-NHCONH-V)2-Ar-C02Bn 25g --- p.168 / 1H NMR of (n-Cl6H33-NHC0NH-V)2-Ar-C02Bn 25h --- p.169 / 13C NMR of (n-C16H33-NHCONH-V)2-Ar-C02Bn 25h --- p.170 / 1H NMR of (n-C19H39-NHC0NH-V)2-Ar-C02Bn 25i --- p.171 / 13C NMR of (n-Cl9H39-NHC0NH-V)2-Ar-C02Bn 25i --- p.172 / 1H NMR of (n-C21H43-NHC0NH-V)2-Ar-C02Bn 25j --- p.173 / 13C NMR of (n-C2lH43-NHC0NH-V)2-Ar-C02Bn 25j --- p.174 / "1H NMR of 1,3-didodecylurea 39" --- p.175 / "13C NMR of 1,3-didodecylurea 39" --- p.176 / "1H NMR of Ethyl 3,5-diaminobenzoate 32" --- p.177 / "13C NMR of Ethyl 3,5-diaminobenzoate 32" --- p.178
87

Dynamic electrorheological effects of rotating spheres. / 旋转颗粒的动态电流变效应 / Dynamic electrorheological effects of rotating spheres. / Xuan zhuan ke li de dong tai dian liu bian xiao ying

January 2005 (has links)
Shen Lei = 旋转颗粒的动态电流变效应 / 沈雷. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 68-72). / Text in English; abstracts in English and Chinese. / Shen Lei = Xuan zhuan ke li de dong tai dian liu bian xiao ying / Shen Lei. / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- ER fluids and dynamic ER effects --- p.1 / Chapter 1.2 --- Negative ER effects and Quincke Rotations --- p.3 / Chapter 1.3 --- Recent works on ER fluids --- p.5 / Chapter 1.4 --- Objectives of the thesis --- p.8 / Chapter 2 --- Dynamic ER effects of two-body systems --- p.10 / Chapter 2.1 --- Formalism under the point-dipole approximation --- p.10 / Chapter 2.2 --- Numerical results under the point-dipole approximation --- p.20 / Chapter 2.3 --- Discussions under the MID approximation --- p.25 / Chapter 2.4 --- Conclusion --- p.28 / Chapter 3 --- Dynamic ER effects of periodic boundary systems --- p.30 / Chapter 3.1 --- Ewald-Kornfeld formulation --- p.31 / Chapter 3.2 --- Structure transformation in ER solids induced by particle rota- tions --- p.36 / Chapter 3.3 --- Structure transformation in ER solids induced by field rotations --- p.42 / Chapter 3.4 --- Discussion and conclusion --- p.45 / Chapter 4 --- Dynamic ER effects of Quincke rotations --- p.48 / Chapter 4.1 --- Formalism --- p.49 / Chapter 4.2 --- Molecular dynamics simulations --- p.51 / Chapter 4.3 --- Numerical results --- p.54 / Chapter 4.4 --- Self assembly of Quincke rotors --- p.61 / Chapter 4.5 --- Discussion and conclusion --- p.62 / Chapter 5 --- Summary --- p.65 / Bibliography --- p.68 / Chapter A --- Derivation of the multiple image expression --- p.73 / Chapter A.1 --- Images of a point charge --- p.73 / Chapter A.2 --- Images of a point dipole --- p.74 / Chapter A.3 --- Images of a pair of spheres --- p.76 / Chapter B --- Optimizations of the Ewald summation --- p.81
88

Study of dielectric properties on interfaces and graded materials. / 界面及梯度物料的介電性質的研究 / Study of dielectric properties on interfaces and graded materials. / Jie mian ji ti du wu liao de jie dian xing zhi de yan jiu

January 2005 (has links)
Kwok Tsun Ah Joseph = 界面及梯度物料的介電性質的研究 / 郭俊雅. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 59-64). / Text in English; abstracts in English and Chinese. / Kwok Tsun Ah Joseph = Jie mian ji ti du wu liao de jie dian xing zhi de yan jiu / Guo Junya. / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- A Review of Composite Materials --- p.1 / Chapter 1.2 --- Graded Colloidal Crystals --- p.4 / Chapter 1.3 --- Long Range Interaction and Local Field Distribution --- p.6 / Chapter 1.4 --- Objective of the Thesis --- p.8 / Chapter 2 --- Local Field Determination in Bulk Periodic Systems --- p.10 / Chapter 2.1 --- Handling the Long Range Interaction --- p.10 / Chapter 2.1.1 --- The Three-dimensional Ewald Summation (EW3D) --- p.10 / Chapter 2.1.2 --- The Two-dimensional Ewald Summation (EW2D) --- p.13 / Chapter 2.1.3 --- The Lekner Summation --- p.14 / Chapter 2.2 --- Local Field Theory --- p.17 / Chapter 2.3 --- Results and Discussion --- p.19 / Chapter 2.4 --- Conclusion --- p.23 / Chapter 3 --- Multi-layer Formulation and Local Field Calculation --- p.26 / Chapter 3.1 --- A Model System --- p.26 / Chapter 3.2 --- Interlayer Interaction --- p.28 / Chapter 3.3 --- Multilayer Self-consistent Formalism --- p.30 / Chapter 3.4 --- Summary --- p.31 / Chapter 4 --- Optical Response of Graded Materials and Interfaces --- p.33 / Chapter 4.1 --- Constructing Graded Colloidal Crystals --- p.33 / Chapter 4.1.1 --- Coated Metallic Spheres --- p.34 / Chapter 4.1.2 --- Drude Dielectric Gradation Profiles --- p.35 / Chapter 4.2 --- Results and Discussion --- p.36 / Chapter 4.2.1 --- Optical Absorption of Graded Colloidal Crystals of Different Structures --- p.36 / Chapter 4.2.2 --- Optical Absorption of Colloidal Interfaces --- p.44 / Chapter 4.2.3 --- Graded Spherical Colloids in Dimer-arrays --- p.49 / Chapter 4.3 --- Other Kinds of Graded Colloidal Crystals and Interfaces --- p.51 / Chapter 4.3.1 --- Coated or Multi-coated Spherical Colloidal Crystals --- p.51 / Chapter 4.3.2 --- Coated Colloidal Crystals with a Radii-Gradient in the Cores --- p.52 / Chapter 4.3.3 --- Composites of Inclusions Other than Spheres --- p.53 / Chapter 4.3.4 --- Hairy interfaces --- p.53 / Chapter 4.4 --- Summary --- p.54 / Chapter 5 --- Conclusion --- p.57 / Bibliography --- p.59 / Chapter A --- Useful Expressions for the Lekner Summation Method --- p.65 / Chapter B --- Lorentz Cavity --- p.68 / Chapter C --- Two Mathematical Proofs --- p.70 / Chapter C.1 --- Proof of Tk『=Tk =-2Tkzz --- p.70 / Chapter C.2 --- Proof of the Sum Rule of Σk=-NTk = 4π for Large N in a Simple Cubic Structure --- p.71 / Chapter D --- The Ewald-Kornfeld Formulation --- p.74
89

Study the fluid-solid transitions in soft colloids using particle tracking microrheology.

January 2013 (has links)
聚(N-異丙基丙烯酸醯胺)(PNIPAM)微凝膠是一種内部有化学交联的三維網絡結構的軟膠體。這種微凝膠的物理性質是介於硬球膠體和超軟軟的星形聚合物或者膠束之間的。根據微粒的柔軟程度,微凝膠可以發生網絡互穿或者形變。因此塞滿微凝膠的體系的有效體積分數可以遠遠超過硬球系統裏的緊密堆積體積分數。這樣的系統會出現比硬球系统更加豐富的相行為。然而現在仍然缺乏對軟膠體系統在超過緊密堆積體積分數時變現的機構和性質的研究。特別是有些理論預測出的相行為仍然還沒被實際的實驗觀測的到。 / 本論文採用了一種新穎的方式去研究微凝膠體系的微流變,這種方法結合了粒子追蹤微流變和磁鑷系統。這種方法本質上是通過一種消逝波(產生於全內反射顯微鏡(TIRM)中的固液介面)作為入射光來探測靠近平直表面上事先植入的探針微粒(直徑為幾個微米)的位移。這個儀器通過記錄來自探針微粒的散射光強度來追蹤植入的探針微粒在垂直於固體水平面上的熱運動。對於位移的記錄可以達到十個納米的精度,使得它成為很靈敏的空間位置探測器。再者,通過添加了磁鑷系統,使得我們能夠有效地通過震蕩的力來在三維空間裏操控植入的微粒。通過控制探針微粒的運動,可以測量微凝膠懸浮液裏局部原位的粘彈性質。我們研究了濃度依賴和溫度依賴的PNIPAM微凝膠懸浮液的結構變化和相行為。 通過微流變的研究,讓我們第一次通過分析微凝膠懸浮液的粘彈性,確認觀測到了由有效體積分數導致的可逆轉的流體態-玻璃態-劉體態的相轉變過程。 / Soft colloids such as poly(N-isopropylamide) (PNIPAM)-based microgels are colloidal particles that consist of chemically cross-linked three-dimensional polymer networks. The physical nature of these microgel particles thus lies in between that of hard-sphere colloids, and ultrasoft star polymers as well as micelles. Due to the softness of the particles, microgels can interpenetrate or compress. As a result, microgels can be packed to effective volume fractions far above solid particles close packing, leading to the existence of much richer phase behavior when compared to simple hard colloidal particles. However, there is still a lack of knowledge on the structure and properties of soft colloid suspensions at and above close packing, and in particular some theoretically predicted phase behavior has not yet been reproduced by the experimental studies. / This thesis presents a novel approach to study the rheological properties of soft microgel suspensions using a combination of particle-tracking microrheology and magnetic tweezers. We essentially employ an evanescent wave (generated by a solid/liquid interface in the total internal reflection microscopy (TIRM)) as the incident light source to probe the displacement of an embedded probe particle (of a few micrometers diameter) near a flat surface. By measuring the scattered intensity, this technique allows tracking of the thermal motion of the embedded particle perpendicular to the solid surface to a precision of tens of nanometers, making it a highly sensitive spatial detector. Moreover, the integration of a magnetic driving force into the TIRM enables us to effectively manipulate the embedded particle in three dimensions by an oscillatory force so that the local viscoelastic properties of the microgel suspensions can be measured by resolving the particle motion. We investigated the concentration- and temperature-dependent on the structural ordering and phase behavior of PNIPAM microgel suspensions. Microrheology allows us, at a first time, to identify an effective volume fraction driven re-entrant liquid-glass-liquid phase transition by looking at the viscoelastic properties of the suspensions. We show that this result is related to the softness of the microgel particles under a confined condition, and discuss our findings in view of the existing theoretical predictions for soft particles. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Hua, Li. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references. / Abstracts also in Chinese. / 摘要 --- p.i / Abstract --- p.ii / Acknowledgement --- p.iv / Chapter 1 --- p.1 / Chapter 1.1 --- Introduction to colloids --- p.1 / Chapter 1.1.1 --- Phase transition in hard colloidal system --- p.2 / Chapter 1.1.2 --- Phase transition in soft colloidal system --- p.3 / Chapter 1.2 --- Overview of phase transition in microgels --- p.4 / Chapter 1.3 --- Simulation of soft colloids’ phase diagram --- p.8 / Chapter 1.4 --- Reference and Notes --- p.12 / Chapter 2 --- p.15 / Chapter 2.1 --- Overview of the microrheology methods --- p.15 / Chapter 2.1.1 --- Passive techniques of microrheology --- p.16 / Chapter 2.1.2 --- Active techniques for microrheology --- p.23 / Chapter 2.2 --- Microrheometer based on incorporating Magnetic Tweezers to Total Internal Reflection Microscopy --- p.29 / Chapter 2.2.1 --- Particle tracking system - TIRM --- p.30 / Chapter 2.2.2 --- Magnetic Tweezers as driven force --- p.32 / Chapter 2.2.3 --- Calibration of the magnetic force --- p.35 / Chapter 2.3 --- Reference and Notes --- p.37 / Chapter 3 --- p.44 / Chapter 3.1 --- Overview of the series of experiments --- p.44 / Chapter 3.2 --- PNIPAM microgel synthesis and characterization --- p.44 / Chapter 3.3 --- Microrheology of PNIPAM microgels suspension --- p.47 / Chapter 3.3.1 --- Volume Fraction dependence measurements --- p.49 / Chapter 3.3.2 --- Temperature depended measurements --- p.53 / Chapter 3.4 --- References and Notes --- p.55 / Chapter 4 --- p.56 / Chapter 4.1 --- Discussion and Conclusion --- p.56 / Chapter 4.2 --- Future Perspectives --- p.59 / Chapter 4.3 --- References and Notes --- p.61
90

Interaction of colloidal particles in suspension and at fluid interfaces.

January 2012 (has links)
目前,膠體粒子在眾多領域扮演著越來重要的角色,例如工業中油漆流變特性的修飾以及在醫藥靶向藥物釋放等。通過改變膠體粒子間的相互作用 ,可以設計得到適合不同需要的穩定的流體、凝膠和晶體 。而開拓膠體粒子廣泛用途的 前提是對於膠體粒子穩定性的充分理解, 因此,對溶液中粒子間的相互作用的研究很有必要 。 / 本文主要討論了兩個問題 ,均圍繞如何利用小體積膠粒子改變大體積粒子間相互作用 。第一部分 ,我們研究二元粒子懸浮液中膠體粒間的相互作用。結果顯示,帶電納米粒子的加入可以改變帶電納米粒子與平面間的相互作用。當以上三者均輕微帶電,即使在很低的濃度下, 納米粒子也會發生沉積,並導致表面間靜電排斥作用的增強 。而對於高度帶電的納米粒子, 微米粒子和平面 ,納米粒子的吸附將受到阻礙,但實驗結果顯示,此時納米粒子仍能夠引導微與平引導微與平面間的額外斥力。此現象違反傳統高電系統中小體積粒子通常引導排空引力的認知。我們認為此現象可能來源於納米粒子被困於平面附近的區域時引導的排斥力 。 在相互排斥的微米粒子及納體系中 ,這個結果是對納米光暈增強的第一個研究 ,並對利用帶電納米粒子調節二元體系穩定性的傳統方法提出挑戰。 / 在本文的第二部分,我們將對二元帶電粒子相互作用的研究擴展到流體介面。 我們系統研究了二元膠體粒子分別在油水介面和空氣上的相互作用。我們利用高分辨亮場顯微鏡和粒子追蹤方法對受限膠體粒子間的相互作用進行研究。結果顯示 ,偶極 -偶極排斥作用在油水介面和空氣上的行為一致。介面膠體粒子間的相互作用主要包括兩個方面,一是對水相電解質敏感的偶極-偶極排斥作用,二是油相中殘餘電荷的靜電排斥作用 。另外,我們的結果顯示在介面上小體積粒子的加入可以導致二維排空引力,使得大體積粒子相互靠近。與溶液中不同的是,這個二維排空引力能夠在很低濃度時發生。 相信這個結果可以鼓勵更多理論方面的研究,從而對解決有關結晶,擠阻及相轉變等基礎問題提供幫助 。 / Colloidal particies are playing an increasingly important role in a wide range of applications, from rheological modifiers in the paint industry to nanoparticies for targeted drug delivery. By altering interactions between colloidal particies, one can design stable fluids, gels or crystals needed for different purposes. Prior to exploit of a widespread application for colloidal particies, a good understanding of the stability of particies suspension and thus of the interaction between particies in aqueous suspension, are required. / In this thesis two major topics are addressed, and both of them are connected with the use of smaller particies to manipulate the interaction force between larger particies. In the first part of this thesis, I have performed an experimental investigation on the interparticie interaction in a binary particie suspension. The results show that the initial addition of charged nanoparticies can alter the interaction force between charged microparticie and plate surface. When the nanoparticie, microparticie and plate were slightly charged, sufficient nanoparticie deposition on plate occurred, leading to an increased electrostatic repulsion between the surfaces even at low nanoparticie concentration. When the nanoparticies, microparticie and plate were highly charged, the adsorption of nanoparticies onto plate/particie surfaces was hindered. Surprisingly, the addition of nanoparticies also produced a repulsive force. This observed trend is substantially different from the conventional highly charged systems where the addition of nanoparticies creates an attractive depletion force between the microparticie and plate. Our results suggest that these nanoparticies might reside to the region near the plate surface, which eventually give rise to the effective repulsive force. This is the first study to demonstrate that nanoparticie halos can also arise in binary systems of mutually but highly repulsive microparticie/nanoparticie dispersions. We believe that this finding will stimulate theoretians to investigate the nature of such induced interparticie interactions. Our study thus highlights the challenges associated with using charged nanoparticles as a tool to regulate stability in the binary particle systems. / In the second part of this thesis, we extend our study of using smaller charged colloidal particles to alter the interaction force between larger colloidal particles at the fluid-fluid interfaces. We systemically study the binary mixture of colloidal particles at both oil/water and air/water interface. We focus on resolving the interaction forces between confined colloidal particles by using a combination of high tempo-spatial resolution optical microscopy and particle tracking algorithm. Our results show that dipolar-dipolar repulsive force is consistently presented at the both air/water and oil/water systems. The interaction force between charged particles trapped at the fluid interfaces may contain two parts: the dipole-dipole repulsion which is sensitive to the electrolyte content of the water phase, and the electrostatic repulsion arised from the presence of a very small amount of residual electric charge at the particle-oil interface that is insensitive to the electrolyte content of the water phase. Moreover, our results show that the addition of small particle can lead to a 2D depletion attraction, pushing the large particles closer at the interface. Unlike in bulk solution, this depletion force occurs even at very low depletant concentration because there is no need of depletants to reside above and below the larger particles when they are confined at the interfaces. We believe this kind of 2D depletion interaction will stimulate more theoretical simulations in order to provide an insight for answering fundamental questions concerning with crystallization, jamming and other phase transitions. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Xing, Xiaochen. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references. / Abstract also in Chinese. / Chapter 1. --- Interaction of Colloidal Particles in Bulk Solution --- p.1 / Chapter 1.1. --- Interparticle Forces --- p.1 / Chapter 1.1.1. --- Steric Stabilization and Bridging Interaction --- p.1 / Chapter 1.1.2. --- Electrostatic Stabilization --- p.2 / Chapter 1.1.3. --- Depletion Interaction --- p.4 / Chapter 1.1.4. --- Haloing Stabilization --- p.7 / Chapter 1.2. --- Surface Force Measurement Techniques --- p.10 / Chapter 1.3. --- Total Internal Reflection Microscope (TIRM) --- p.12 / Chapter 1.3.1. --- The Technique and Principle --- p.12 / Chapter 1.3.2. --- Measuring the Potentials --- p.18 / Chapter 1.4. --- References and Notes --- p.22 / Chapter 2. --- Direct Measurement of Interaction Forces in Bidispersed Particle Suspension Systems --- p.25 / Chapter 2.1. --- Introduction --- p.25 / Chapter 2.2. --- Interaction Forces in the Bidispersed Systems --- p.28 / Chapter 2.2.1. --- Direct Measurement of the Interaction Forces between Colloidal Particles in a Solution of PS Nanoparticles. --- p.28 / Chapter 2.2.1.1. --- Materials and Methods Materials and Methods Materials and Methods Materials and MethodsMaterials and Methods Materials and Methods --- p.29 / Chapter 2.2.1.2. --- Results Results --- p.32 / Chapter 2.2.1.3. --- Discussion Discussion --- p.41 / Chapter 2.2.2. --- Direct Measurement of the Interaction Forces between Colloidal Particles in a Solution of PS-co-NIPAm Nanoparticles --- p.45 / Chapter 2.3. --- Conclusion --- p.52 / Chapter 2.4. --- References and Notes --- p.54 / Chapter 3. --- Colloidal Particles at Liquid/Liquid Interface --- p.56 / Chapter 3.1. --- Introduction --- p.56 / Chapter 3.2. --- Interactions Forces between Colloidal Particles at Interface --- p.59 / Chapter 3.2.1. --- Repulsive Interactions --- p.63 / Chapter 3.2.2. --- Attractive Interactions --- p.74 / Chapter 3.2.3. --- Force Measurements of Interfacial Particles --- p.79 / Chapter 3.3. --- References and Notes --- p.82 / Chapter 4. --- Direct Measurement of Interaction Force between Colloidal Particles at Fluid Interfaces --- p.88 / Chapter 4.1. --- Materials and Method --- p.90 / Chapter 4.1.1. --- Apparatus and Sample Preparation --- p.90 / Chapter 4.1.2. --- Image processing --- p.92 / Chapter 4.1.3. --- Pair Distribution Function (PDF) and Radial Distribution Function (RDF) --- p.92 / Chapter 4.1.4. --- Pair-Potential of Particle Ensembles --- p.96 / Chapter 4.2. --- Interactions of Particles at Oil (Air)/Water Interface --- p.97 / Chapter 4.2.1. --- Interactions of Monodispersed Colloidal Particles at Oil (Air)/Water Interface --- p.97 / Chapter 4.2.2. --- Effect of Adding Salt on the Interparticle Interaction at Oil(Air)/Water Interface --- p.104 / Chapter 4.2.3. --- Interaction of Binary Particles at Oil/Water Interface --- p.108 / Chapter 4.2.4. --- Effect of Adding Salt on the Binary Particles at the Oil/Water Interface --- p.114 / Chapter 4.2.5. --- Mesostructures at the Interface --- p.118 / Chapter 4.3. --- References and Notes --- p.122

Page generated in 0.0379 seconds