• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 60
  • 30
  • 16
  • 16
  • 12
  • 11
  • 9
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Neighbour-distinguishing decompositions of graphs / Décompositions de graphes voisins-distinguantes

Senhaji, Mohammed 14 September 2018 (has links)
Dans cette thèse nous explorons différentes décompositions de graphes. Le titre de la présente thèse est dû au fait que la majorité de ces décompositions sont des décompositions voisin-distinguantes. En d'autres mots, nous pouvons en extraire des colorations propres des sommets. La question principale présentée dans cette thèse a été introduite par Karoński, Łuczak et Thomason: Est il possible de pondérer les arêtes d'un graphes avec les poids 1, 2 et 3, afin que tous les sommets voisins soient distingués par la somme des poids de leurs arêtes incidentes ? Cette question deviendra plus tard la fameuse 1-2-3 Conjecture. Nous présentons différentes variantes de la 1-2-3 Conjecture, ainsi que leurs liens avec les décompositions localement irrégulières. Nous nous intéressons tant à des problèmes d'optimisation qu'à des problèmes algorithmiques. Nous commençons par introduire une variante équitable des arête-pondérations voisin-somme-distinguantes, où chaque poids doit être utilisé le même nombre de fois (à l'unité près). Ensuite nous présentons une variante injective ou chaque poids est utilisé au plus une seule fois. Ce qui est un cas particulier de la variante équitable. De plus les pondérations injectives sont une variante locale des étiquetages anti-magiques. Ensuite nous modifions les conditions de distinction entre voisin en introduisant une variante 2-distinguante. les pondérations voisins-somme-2-distinguantes requierent que deux sommets voisins dans le graphe aient des sommes incidentes qui diffèrent d'au moins 2. Nous étudions le poids maximum minimal dans de telles pondérations pour certaines familles de graphes, ainsi que des problèmes de complexité. Dû aux liens entre les pondérations voisins-sommet-distinguantes et les décompositions localement irrégulières, nous nous sommes aussi intéressé à ces dernières, particulièrement pour les graphes sub-cubiques, ainsi qu'à d'autres variantes des décompositions localement irrégulières. Finalement nous présentons un jeu de pondérations à deux joueurs, ainsi qu'une théorie de décompositions qui unifie les pondérations voisin-somme-distinguantes et les décompositions localement irrégulières. / In this thesis we explore graph decompositions under different constraints. The title of the is due to the fact that most of these decompositions are neighbour-distinguishing. That is, we can extract from each such decomposition a proper vertex colouring. Moreover, most of the considered decompositions are edge partitions, and therefore can be seen as edge-colourings. The main question presented in this thesis is was introduced by Karoński, Łuczak and Thomason in [KLT04]: Can we weight the edges of a graph G, with weights 1, 2, and 3, such that any two of adjacent vertices of G are distinguished by the sum of their incident weights ? This question later becomes the famous 1-2-3 Conjecture. In this thesis we explore several variants of the 1-2-3 Conjecture, and their links with locally irregular decompositions. We are interested in both optimisation results and algorithmic problems. We first introduce an equitable version of the neighbour-sum- distinguishing edge-weightings, that is a variant where we require every edge weight to be used the same number of times up to a difference of 1. Then we explore an inject- ive variant where each edge is assigned a different weight, which yields necessarily an equitable weighting. This gives us first general upper bounds on the equitable version. Moreover, the injective variant is also a local version of the well-known antimagic la- belling. After that we explore how neighbour-sum-distinguishing weightings behave if we require sums of neighbouring vertices to differ by at least 2. Namely, we present results on the smallest maximal weight needed to construct such weightings for some classes of graphs, and study some algorithmic aspects of this problem. Due to the links between neighbour-sum-distinguishing edge weightings and locally irregular decompositions, we also explore the locally irregular index of subcubic graphs, along with other variants of the locally irregular decomposition problem. Finally, we present a more general work to- ward a general theory unifying nsd edge-weightings and locally irregular decompositions. We also present a 2-player game version of neighbour-sum-distinguishing edge-weightings and exhibit sufficient conditions for each player to win the game.
22

Upper bounds on the star chromatic index for bipartite graphs

Melinder, Victor January 2020 (has links)
An area in graph theory is graph colouring, which essentially is a labeling of the vertices or edges according to certain constraints. In this thesis we consider star edge colouring, which is a variant of proper edge colouring where we additionally require the graph to have no two-coloured paths or cycles with length 4. The smallest number of colours needed to colour a graph G with a star edge colouring is called the star chromatic index of G and is denoted <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Cchi'_%7Bst%7D(G)" />. This paper proves an upper bound of the star chromatic index of bipartite graphs in terms of the maximum degree; the maximum degree of G is the largest number of edges incident to a single vertex in G. For bipartite graphs Bk with maximum degree <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?k%5Cgeq1" />, the star chromatic index is proven to satisfy<img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%20%5Cchi'_%7Bst%7D(B_k)%20%5Cleq%20k%5E2%20-%20k%20+%201" />. For bipartite graphs <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?B_%7Bk,n%7D" />, where all vertices in one part have degree n, and all vertices in the other part have degree k, it is proven that the star chromatic index satisfies <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Cchi'_%7Bst%7D(Bk,n)%20%5Cleq%20k%5E2%20-2k%20+%20n%20+%201,%20k%20%5Cgeq%20n%20%3E%201" />. We also prove an upper bound for a special case of multipartite graphs, namely <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?K_%7Bn,1,1,%5Cdots,1%7D" /> with m parts of size one. The star chromatic index of such a graph satisfies<img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Cchi'_%7Bst%7D(K_%7Bn,1,1,%5Cdots,1%7D)%20%5Cleq%2015%5Clceil%5Cfrac%7Bn%7D%7B8%7D%5Crceil%5Ccdot%5Clceil%5Cfrac%7Bm%7D%7B8%7D%5Crceil%20+%20%5Cfrac%7B1%7D%7B2%7Dm(m-1),%5C,m%20%5Cgeq%205" />. For complete multipartite graphs where m &lt; 5, we prove lower upper bounds than the one above.
23

Gray code numbers of complete multipartite graphs

Bard, Stefan 23 December 2014 (has links)
Let G be a graph and k be an integer greater than or equal to the chromatic number of G. The k-colouring graph of G is the graph whose vertices are k-colourings of G, with two colourings adjacent if they colour exactly one vertex differently. We explore the Hamiltonicity and connectivity of such graphs, with particular focus on the k-colouring graphs of complete multipartite graphs. We determine the connectivity of the k-colouring graph of the complete graph on n vertices for all n, and show that the k-colouring graph of a complete multipartite graph K is 2-connected whenever k is at least the chromatic number of K plus one. Additionally, we examine a conjecture that every connected k-colouring graph is 2-connected, and give counterexamples for k greater than or equal to 4. As our main result, we show that for all k greater than or equal to 2t, the k-colouring graph of a complete t-partite graph is Hamiltonian. Finally, we characterize the complete multipartite graphs K whose k-colouring graphs are Hamiltonian when k is the chromatic number of K plus one. / Graduate
24

Self-Reduction for Combinatorial Optimisation

Sheppard, Nicholas Paul January 2001 (has links)
This thesis presents and develops a theory of self-reduction. This process is used to map instances of combinatorial optimisation problems onto smaller, more easily solvable instances in such a way that a solution of the former can be readily re-constructed, without loss of information or quality, from a solution of the latter. Self-reduction rules are surveyed for the Graph Colouring Problem, the Maximum Clique Problem, the Steiner Problem in Graphs, the Bin Packing Problem and the Set Covering Problem. This thesis introduces the problem of determining the maximum sequence of self-reductions on a given structure, and shows how the theory of confluence can be adapted from term re-writing to solve this problem by identifying rule sets for which all maximal reduction sequences are equivalent. Such confluence results are given for a number of reduction rules on problems on discrete systems. In contrast, NP-hardness results are also presented for some reduction rules. A probabilistic analysis of self-reductions on graphs is performed, showing that the expected number of self-reductions on a graph tends to zero as the order of the graph tends to infinity. An empirical study is performed comparing the performance of self-reduction, graph decomposition and direct methods of solving the Graph Colouring and Set Covering Problems. The results show that self-reduction is a potentially valuable, but sometimes erratic, method of finding exact solutions to combinatorial problems.
25

Daylight Influence on Colour Design : Empirical Study on Perceived Colour and Colour Experience Indoors

Hårleman, Maud January 2007 (has links)
It is known that one and the same interior colouring will appear different in rooms with windows facing north or facing south, but it is not known how natural daylight from these two compass points affects perceived colour and the ways in which colour is experienced. The objective is to describe the perceived colours to be expected in rooms with sunlight and diffused light, and thus develop a tool for colour design. Two empirical investigations provide the basis for six attached papers. The model is exploratory with a qualitative character. One hundred and ninety-one studies were carried out with 79 observers in full-scale rooms, with double-glazed transparent room windows facing north or south. The NCS colour sample collection and colour terminology were used, with three yellow, red, blue and green hues in two nuances: whitish 1010 and more chromatic 1030. The walls were painted in a total of 23 selected inherent colours with each colour observed in up to 10 studies. Colour matching was achieved using a colour reference box and results were analysed with the aid of the terms inherent colour and identity colour. The colour reference box was tested in a separate study to investigate any methodological problems. Room character was described using semantic differentials, and data was processed using the SPSS statistics program. Verbal description using own words was applied in a descriptive and reflecting method to find sensory differences and precise, yet ordinary descriptions. Colour differences between rooms were assessed using verbal description of hue and nuance, and a supplementary method with specified colour samples. Emotional impressions of colour and rooms were assessed using a method describing primary emotions and the results were compared with results from another study using small colour samples. The colouring that enhanced or neutralised room light situation was compared as regards emotional impression and thereafter compared with results from another study. Daylight from the different compass points caused a clear shift in hue and nuance. The perceived colour was consistently more chromatic and more blackish than the inherent colour used. Nuance 1010 shifted more in chromaticness than nuance, while 1030 instead increased most in chromaticness. Even minor colour differences resulted in major differences in colour experience. The north-facing room in yellowish colours shifted towards reduced yellowishness in both hue and chromaticness. Indications were that north-facing rooms in reddish blue become more reddish than south-facing rooms. / QC 20100716
26

List colouring hypergraphs and extremal results for acyclic graphs

Pei, Martin January 2008 (has links)
We study several extremal problems in graphs and hypergraphs. The first one is on list-colouring hypergraphs, which is a generalization of the ordinary colouring of hypergraphs. We discuss two methods for determining the list-chromatic number of hypergraphs. One method uses hypergraph polynomials, which invokes Alon's combinatorial nullstellensatz. This method usually requires computer power to complete the calculations needed for even a modest-sized hypergraph. The other method is elementary, and uses the idea of minimum improper colourings. We apply these methods to various classes of hypergraphs, including the projective planes. We focus on solving the list-colouring problem for Steiner triple systems (STS). It is not hard using either method to determine that Steiner triple systems of orders 7, 9 and 13 are 3-list-chromatic. For systems of order 15, we show that they are 4-list-colourable, but they are also ``almost'' 3-list-colourable. For all Steiner triple systems, we prove a couple of simple upper bounds on their list-chromatic numbers. Also, unlike ordinary colouring where a 3-chromatic STS exists for each admissible order, we prove using probabilistic methods that for every $s$, every STS of high enough order is not $s$-list-colourable. The second problem is on embedding nearly-spanning bounded-degree trees in sparse graphs. We determine sufficient conditions based on expansion properties for a sparse graph to embed every nearly-spanning tree of bounded degree. We then apply this to random graphs, addressing a question of Alon, Krivelevich and Sudakov, and determine a probability $p$ where the random graph $G_{n,p}$ asymptotically almost surely contains every tree of bounded degree. This $p$ is nearly optimal in terms of the maximum degree of the trees that we embed. Finally, we solve a problem that arises from quantum computing, which can be formulated as an extremal question about maximizing the size of a type of acyclic directed graph.
27

List colouring hypergraphs and extremal results for acyclic graphs

Pei, Martin January 2008 (has links)
We study several extremal problems in graphs and hypergraphs. The first one is on list-colouring hypergraphs, which is a generalization of the ordinary colouring of hypergraphs. We discuss two methods for determining the list-chromatic number of hypergraphs. One method uses hypergraph polynomials, which invokes Alon's combinatorial nullstellensatz. This method usually requires computer power to complete the calculations needed for even a modest-sized hypergraph. The other method is elementary, and uses the idea of minimum improper colourings. We apply these methods to various classes of hypergraphs, including the projective planes. We focus on solving the list-colouring problem for Steiner triple systems (STS). It is not hard using either method to determine that Steiner triple systems of orders 7, 9 and 13 are 3-list-chromatic. For systems of order 15, we show that they are 4-list-colourable, but they are also ``almost'' 3-list-colourable. For all Steiner triple systems, we prove a couple of simple upper bounds on their list-chromatic numbers. Also, unlike ordinary colouring where a 3-chromatic STS exists for each admissible order, we prove using probabilistic methods that for every $s$, every STS of high enough order is not $s$-list-colourable. The second problem is on embedding nearly-spanning bounded-degree trees in sparse graphs. We determine sufficient conditions based on expansion properties for a sparse graph to embed every nearly-spanning tree of bounded degree. We then apply this to random graphs, addressing a question of Alon, Krivelevich and Sudakov, and determine a probability $p$ where the random graph $G_{n,p}$ asymptotically almost surely contains every tree of bounded degree. This $p$ is nearly optimal in terms of the maximum degree of the trees that we embed. Finally, we solve a problem that arises from quantum computing, which can be formulated as an extremal question about maximizing the size of a type of acyclic directed graph.
28

Introduction to the Minimum Rainbow Subgraph problem / Einführung in das Minimum Rainbow Subgraph Problem

Matos Camacho, Stephan 27 March 2012 (has links) (PDF)
Arisen from the Pure Parsimony Haplotyping problem in the bioinformatics, we developed the Minimum Rainbow Subgraph problem (MRS problem): Given a graph $G$, whose edges are coloured with $p$ colours. Find a subgraph $F\\\\subseteq G$ of $G$ of minimum order and with $p$ edges such that each colour occurs exactly once. We proved that this problem is NP-hard, and even APX-hard. Furthermore, we stated upper and lower bounds on the order of such minimum rainbow subgraphs. Several polynomial-time approximation algorithms concerning their approximation ratio and complexity were discussed. Therefore, we used Greedy approaches, or introduced the local colour density $\\\\lcd(T,S)$, giving a ratio on the number of colours and the number of vertices between two subgraphs $S,T\\\\subseteq G$ of $G$. Also, we took a closer look at graphs corresponding to the original haplotyping problem and discussed their special structure.
29

Self-Reduction for Combinatorial Optimisation

Sheppard, Nicholas Paul January 2001 (has links)
This thesis presents and develops a theory of self-reduction. This process is used to map instances of combinatorial optimisation problems onto smaller, more easily solvable instances in such a way that a solution of the former can be readily re-constructed, without loss of information or quality, from a solution of the latter. Self-reduction rules are surveyed for the Graph Colouring Problem, the Maximum Clique Problem, the Steiner Problem in Graphs, the Bin Packing Problem and the Set Covering Problem. This thesis introduces the problem of determining the maximum sequence of self-reductions on a given structure, and shows how the theory of confluence can be adapted from term re-writing to solve this problem by identifying rule sets for which all maximal reduction sequences are equivalent. Such confluence results are given for a number of reduction rules on problems on discrete systems. In contrast, NP-hardness results are also presented for some reduction rules. A probabilistic analysis of self-reductions on graphs is performed, showing that the expected number of self-reductions on a graph tends to zero as the order of the graph tends to infinity. An empirical study is performed comparing the performance of self-reduction, graph decomposition and direct methods of solving the Graph Colouring and Set Covering Problems. The results show that self-reduction is a potentially valuable, but sometimes erratic, method of finding exact solutions to combinatorial problems.
30

Homomorphisms of (j,k)-mixed graphs / Homomorphisms of (j,k)-mixed graphs

Duffy, Christopher 19 August 2015 (has links)
Un graphe mixte est un graphe simple tel que un sous-ensemble des arêtes a une orientation. Pour entiers non négatifs j et k, un graphe mixte-(j,k) est un graphe mixte avec j types des arcs and k types des arêtes. La famille de graphes mixte-(j,k) contient graphes simple, (graphes mixte−(0,1)), graphes orienté (graphes mixte−(1,0)) and graphe coloré arête −k (graphes mixte−(0,k)).Un homomorphisme est un application sommet entre graphes mixte−(j,k) que tel les types des arêtes sont conservés et les types des arcs et leurs directions sont conservés. Le nombre chromatique−(j,k) d’un graphe mixte−(j,k) est le moins entier m tel qu’il existe un homomorphisme à une cible avec m sommets. Quand on observe le cas de (j,k) = (0,1), on peut déterminer ces définitions correspondent à les définitions usuel pour les graphes.Dans ce mémoire on etude le nombre chromatique−(j,k) et des paramètres similaires pour diverses familles des graphes. Aussi on etude les coloration incidence pour graphes and digraphs. On utilise systèmes de représentants distincts et donne une nouvelle caractérisation du nombre chromatique incidence. On define le nombre chromatique incidence orienté et trouves un connexion entre le nombre chromatique incidence orienté et le nombre chromatic du graphe sous-jacent. / A mixed graph is a simple graph in which a subset of the edges have been assigned directions to form arcs. For non-negative integers j and k, a (j,k)−mixed graph is a mixed graph with j types of arcs and k types of edges. The collection of (j,k)−mixed graphs contains simple graphs ((0,1)−mixed graphs), oriented graphs ((1,0)−mixed graphs) and k−edge- coloured graphs ((0,k)−mixed graphs).A homomorphism is a vertex mapping from one (j,k)−mixed graph to another in which edge type is preserved, and arc type and direction are preserved. The (j,k)−chromatic number of a (j,k)−mixed graph is the least m such that an m−colouring exists. When (j,k)=(0,1), we see that these definitions are consistent with the usual definitions of graph homomorphism and graph colouring.In this thesis we study the (j,k)−chromatic number and related parameters for different families of graphs, focussing particularly on the (1,0)−chromatic number, more commonly called the oriented chromatic number, and the (0,k)−chromatic number.In addition to considering vertex colourings, we also consider incidence colourings of both graphs and digraphs. Using systems of distinct representatives, we provide a new characterisation of the incidence chromatic number. We define the oriented incidence chromatic number and find, by way of digraph homomorphism, a connection between the oriented incidence chromatic number and the chromatic number of the underlying graph. This connection motivates our study of the oriented incidence chromatic number of symmetric complete digraphs.

Page generated in 0.0732 seconds