• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermally and Chemically Induced Changes in Interface Shear Behavior of Landfill Liners

Li, Ling January 2015 (has links)
Composite liners are used in landfills to isolate solid waste from the local environment. The combination of a high-density polyethylene (HDPE) geomembrane and compacted clay liner (CCL) is commonly used worldwide. In the Ontario region, bentonite sand mixtures (BSMs) and the local clay i.e. Leda clay, can be considered as appropriate CCL materials. However, the interface failure between smooth HDPE and CCL is a critical issue for landfill safety. The shear stress behavior and strength parameters at the interface between the HDPE and CCL can be affected by many factors, such as temperature and chemicals. The temperature difference between winter and summer in the Ontario region is approximately 50°C, which causes a freeze-thaw (F-T) phenomenon in local landfills. Leachate and heat are generated during the solid waste stabilization process. Landfill leachate usually contains a high concentration of cations, which can carry heat, thus affecting the landfill liner properties. As a result, the interface shear stress behavior and strength parameters are affected by the aforementioned conditions. In this thesis, a series of experiments were conducted on the shear stress behavior at the interface of Leda clay / HDPE and bentonite sand mixture (BSM) / HDPE. In order to understand the influence of the F-T phenomenon, the samples were tested by varying the number of F-T cycles. Meanwhile, in order to understand the combined influence of cations and heat, the samples were saturated with different solutions, i.e. distilled water, potassium chloride and calcium chloride solutions. Then they were cured in an oven with different temperatures and room temperature, respectively. All of the laboratorial shear tests have been performed by using a direct shear machine. Results show that the BSM /HDPE and Leda clay/ HDPE interfaces are both influenced by the F-T cycles. The BSM/HDPE interface shear of the samples between 0 and 5 F-T cycles has more obvious differences, while the friction angle of compacted Leda clay/HDPE exhibits distinct reduction in the first 3 cycles, after which, the difference becomes hard to differentiate. The results also indicate that both high temperature and high concentration of cations from leachate can slight reduce the interface shear stress of BSM/HDPE. However, the combined influence of thermal-chemical conditions is not much more obvious compared to the effects of a single thermal or chemical condition. The BSM materials, which were saturated with different solutions, are also tested by using X-ray diffraction to examine the mineral changes in the BSM. The calcium and potassium cations convert sodium-bentonite into calcium-rich bentonite and illite/semectie mixtures, respectively. Nevertheless, the changess of clay part caused by the combined effect of heat and leachate have limited influence on the BSM/HDPE interface shear behavior.

Page generated in 0.1352 seconds