• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 11
  • 5
  • 2
  • 2
  • Tagged with
  • 92
  • 40
  • 30
  • 29
  • 24
  • 18
  • 18
  • 16
  • 15
  • 14
  • 12
  • 12
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Development of gas turbine combustor preliminary design methodologies and preliminary assessments of advanced low emission combustor concepts

Khandelwal, Bhupendra 07 1900 (has links)
It is widely accepted that climate change is a very serious environmental concern. Levels of carbon dioxide (CO2) and other emissions in the global atmosphere have increased substantially since the industrial revolution and now increasing faster than ever before. There is a thought that this has already led to dangerous warming in the Earth’s atmosphere and relevant changes around. Emissions legislations are going to be stringent as the years will pass. Hydro carbon fuel cost is also increasing substantially; more over this is non- renewable source of energy. There is an urgent need for novel combustor technologies for reducing emission as well as exploring alternative renewable fuels without effecting combustor performance. Development of novel combustors needs comprehensive understanding of conventional combustors. The design and development of gas turbine combustors is a crucial but uncertain part of an engine development process. At present, the design process relies upon a wealth of experimental data and correlations. Some major engine manufacturers have addressed the above problem by developing computer programs based on tests and empirical data to assist combustor designers, but such programs are proprietary. There is a need of developing design methodologies for combustors which would lead to substantial contribution to knowledge in field of combustors. Developed design methodologies would be useful for researchers for preliminary design assessments of a gas turbine combustor. In this study, step by step design methodologies of dual annular radial and axial combustor, triple annular combustor and reverse flow combustor have been developed. Design methodologies developed could be used to carry out preliminary design along with performance analysis for conventional combustion chambers. In this study the author has also proposed and undertaken preliminary studies of some novel combustor concepts. A novel concept of a dilution zone less combustor has been proposed in this study. According to this concept dilution air would be introduced through nozzle guide vanes to provide an optimum temperature traverse for turbine blades. Preliminary study on novel dilution zone less combustor predicts that the length of this combustor would be shorter compared to conventional case, resulting in reduced weight, fuel burn and vibrations. Reduced fuel burn eventually leads to lower emissions. Another novel concept of combustor with hydrogen synthesis from kerosene reformation has been proposed and a preliminary studies has been undertaken in this work. Addition of hydrogen as an additive in gas turbine combustor shows large benefits to the performance of gas turbine engines in addition to reduction in NOx levels. The novel combustor would have two stages, combustion of ~5% of the hydrocarbon fuel would occur in the first stage at higher equivalence ratios in the presence of a catalyst, which would eventually lead to the formation of hydrogen rich flue gases. In the subsequent stage the hydrogen rich flue gases from the first stage would act as an additive to combustion of the hydrocarbon fuel. It has been preliminary estimated that the mixture of the hydrocarbon fuel and air could subsequently be burned at much lower equivalence ratios than conventional cases, giving better temperature profiles, flame stability limits and lower NOx emissions. The effect of different geometrical parameters on the performance of vortex controlled hybrid diffuser has also been studied. It has been predicted that vortex chamber in vortex controlled hybrid diffuser does not play any role in altering the performance of diffuser. The overall contribution to knowledge of this study is development of combustor preliminary design methodologies with different variants. The other contribution to knowledge is related to novel combustors with a capability to produce low emissions. Study on novel combustor and diffuser has yielded application of two patent applications with several other publications which has resulted in a contribution to knowledge. A list of research articles, two patents, awards and achievements are presented in Appendix C.
12

Estudo de uma planta piloto para a combustão em leito fluidizado borbulhante de carvões minerais brasileiros com altos teores de cinzas e enxofre / not availalbe

João Paulo Tureso 12 November 2004 (has links)
O carvão mineral nacional representa uma alternativa atraente para a solução do problema energético do Brasil. Os maiores problemas técnicos associados à queima dos carvões minerais brasileiros referem-se à emissões de gases poluentes de enxofre e nitrogênio e a problemas causados por fusão de cinzas. Por outro lado, a queima eficiente e limpa de biomassa e resíduos industriais entre outros materiais combustíveis, pode trazer benefícios ambientais consideráveis. O processo de combustão em leito fluidizado é reconhecidamente flexível quanto ao uso de combustível, trabalha com baixas temperaturas que evitam a fusão de cinzas e diminuem a emissão de NOx e permite a remoção de SOx ainda dentro do leito, por meio da adição de calcário o que dispensa tratamento adicional para este gás. Considerando o exposto acima, uma planta piloto de combustão em leito fluidizado foi projetada e construída no NETeF da EESC/USP e utilizada inicialmente para testes de remoção de SO2 durante a queima de carvão. A concepção e construção do reator e de seus periféricos são discutidas e os resultados são apresentados. Na absorção de SO2 duas variáveis foram consideradas; a relação molar Ca/S e o excesso de ar de combustão. Os resultados mostram eficiência de remoção de SO2 de até 94% para relação Ca/S = 4 e excesso de ar de 21%. Para a relação Ca/S = 1, a mais baixa utilizada neste trabalho e que representa a condição estequiométrica, este valor cai para 55%. O excesso de ar mostrou um papel claro, porém mais modesto. A redução do excesso de ar de 21% para a condição estequiométrica levou a eficiência de 94 para 84%. / The utilization of coal is an attractive way to reduce some of the energy problems in Brazil. Major problems associated with coal combustion are polutant emissions, mainly SOx and NOx and ash fusion. Additionally, the efficient combustion of biomass and industrial hazardous wastes, among other fuels, can bring a significant environmental benefit. Fluidized bed combustion is recognized to be flexible in the use of fuel, produce low temperature that avoid ash fusion and reduce NOx emissions, and allow SOx absorption by limestone inside the bed, what makes unnecessary additional gas treatment for this pollutant. Considering that, a fluidized bed combustion pilot plant was projected and built in NETeF at EESC/USP and initially used for investigations of the SO2 absorption by limestone during coal combustion. The concept and construction of the plant are presented and discussed and the results are shown. Regarding the absorption of SO2, two variables were investigated, namely the molar ratio Ca/S and the excess of combustion air. An absorption efficiency of up to 94% was achieved with Ca/S = 4 and excess air of 21%. When Ca/S = 1 was used - what represents the stoichiometric ratio and was the lowest used in this work, this efficiency dropped to 55%. Excess air showed a clear but more modest role. The decrease of excess air from 21% to the stoichiometric condition decreased the efficiency from 94 to 84%.
13

Prediction of NOX emissions for an RQL combustor using a stirred reactor modelling approach

Prakash, Atma January 2015 (has links)
In an effort to reduce NOX emissions both in the landing and take-off (LTO) cycle as well as in cruise, significant research has been conducted on novel aero-engine low emissions combustor design concepts. Preliminary combustor design and emissions prediction software tools are becoming increasingly important during the conceptual design phase of aero-engine combustors. They allow a large number of designs to be explored, in a relatively short amount of time, thereby identifying the most promising designs to consider for further development. There are three methods for NOX emission prediction; correlations, stirred reactor models and CFD models. Correlation methods are derived from experimental results and are therefore only applicable for combustors for which data is available. The stirred reactor modelling approach provides a reasonably good compromise with respect to computational time and robustness relative to correlation and CFD based methods. The stirred reactor method assumes finite rate chemistry inside the combustor using simplified chemical kinetic models. The basic concept of the reactor-based method is to split the combustor into a number of reactors (perfectly or partially stirred) to compute the overall emissions. The primary objective of this doctoral research was to assess the suitability and limitations of the stirred reactor modelling approach to predict NOX emissions of a Rich-Burn Quick-Quench and Lean-Burn (RQL) combustor concept. The geometry of the RQL combustor and the model constraints were assumed from a NASA test rig experiment. The stirred reactor emission prediction model developed was verified using this test data. The results suggest that, based on the modelling assumptions made, the stirred reactor modelling approach is able to capture the trends of emissions (with changing boundary conditions) even though there are discrepancies in the absolute values. This suggests that the stirred reactor model is a useful tool during the preliminary design phase to quantify the impact of changes in boundary conditions/design parameters on changes in NOX emissions.
14

Development and Testing of Pulsed and Rotating Detonation Combustors

St. George, Andrew 27 May 2016 (has links)
No description available.
15

Numerical Simulations Of Two-Phase Reacting Flow In A Cavity Combustor

Sivaprakasam, M 12 1900 (has links) (PDF)
In the present work, two phase reacting flow in a single cavity Trapped Vortex Combustor (TVC) is studied at atmospheric conditions. KIVA-3V, numerical program for simulating three dimensional compressible reacting flows with sprays using Lagrangian-Drop Eulerian-fluid procedure is used. The stochastic discrete droplet model is used for simulating the liquid spray. In each computational cell, it is assumed that the volume occupied by the liquid phase is very small. But this assumption of very low liquid volume fraction in a computational cell is violated in the region close to the injection nozzle. This introduces grid dependence in predictions of liquid phase in the region close to the nozzle in droplet collision algorithm, and in momentum coupling between the liquid and the gas phase. Improvements are identified to reduce grid dependence of these algorithms and corresponding changes are made in the standard KIVA-3V models. Pressure swirl injector which produces hollow cone spray is used in the current study along with kerosene as the liquid fuel. Modifications needed for modelling pressure swirl atomiser are implemented. The Taylor Analogy Breakup (TAB) model, the standard model for predicting secondary breakup is improved with modifications required for low pressure injectors. The pressure swirl injector model along with the improvements is validated using experimental data for kerosene spray from the literature. Simulations of two phase reacting flow in a single cavity TVC are performed and the temperature distribution within the combustor is studied. In order to identify an optimum configuration with liquid fuel combustion, the following parameters related to fuel and air such as cavity fuel injection location, cavity air injection location, Sauter Mean Diameter (SMD) of injected fuel droplets, velocity of the fuel injected are studied in detail in order to understand the effect of these parameters on combustion characteristics of a single cavity TVC.
16

Effects of high intensity, large-scale free-stream turbulence on combustor effusion cooling

Martin, Damian January 2013 (has links)
Full-coverage or effusion cooling is commonly used in the thermal management of gas turbine combustion systems. The combustor environment is characterised by highly turbulent free-stream conditions and relatively large turbulent length scales. This turbulent flow field is predominantly created by the upstream fuel injector for lean burn systems. In rich burn systems the turbulent flow field is augmented further by the addition of dilution ports. The available evidence suggests that large energetic eddies interact strongly with the injected coolant fluid and may have a significant impact on the film-cooling performance. The desire to create compact low-emission combustion systems with improved specific fuel consumption, has given rise to a desire to reduce the quantity of air used in wall cooling, and has led to the need for improved cooling correlations and validated computational methods. In order to establish a greater understanding of effusion cooling under conditions of very high free-stream turbulence, a new laboratory test facility has been created that is capable of simulating representative combustor flow conditions, and that allows for a systematic investigation of cooling performance over a range of free-stream turbulence conditions (up to 25% intensity, integral length scale-to-coolant hole diameter ratios of 26) and coolant to mainstream density ratios (??_c/??_??? ???2). This thesis describes this new test facility, including the method for generating combustor relevant flow conditions. The hot side film cooling performance of cylindrical and fanned hole effusion has been evaluated in terms of adiabatic film-cooling effectiveness and normalised heat transfer coefficient (HTC) and heat flux reduction (HFR). Infrared thermography was employed to produce spatial resolved surface temperature distributions of the effusion surface. The analysis of this data is supported by fluid temperature field measurements. The interpretation of the data has established the impact of turbulence intensity, integral length scale and density ratio on the mixing processes between free-stream and coolant flows. Elevated levels of free-stream turbulence increase the rate of mixing and degrade the cooling effectiveness at low blowing ratios whereas at high blowing ratios, where the coolant detaches from the surface, a modest increase has been observed under certain conditions; this is due to the turbulent transport of the detached coolant fluid back towards the wall. For angled cylindrical hole injection the impact of density ratio as an independent parameter was found to be relatively weak. Adiabatic effectiveness data gathered at DR's of 1 - 1.4 scaled reasonable well when plotted against momentum flux ratio. This suggests data collected at low DR's can be scaled to engine representative DR's. The investigation of shaped cooling holes found fanned effusion has the potential to dramatically improve film effectiveness. The diffusion of the flow through a fanned exit prevented jet detachment at blowing ratios up to 5, increasing spatially averaged effectiveness by 89%.
17

Massively-Parallel Spectral Element Large Eddy Simulation of a Ring-Type Gas Turbine Combustor

Camp, Joshua Lane 2011 May 1900 (has links)
The average and fluctuating components in a model ring-type gas turbine combustor are characterized using a Large Eddy Simulation at a Reynolds number of 11,000, based on the bulk velocity and the mean channel height. A spatial filter is applied to the incompressible Navier-Stokes equations, and a high pass filtered Smagorinsky model is used to model the sub-grid scales. Two cases are studied: one with only the swirler inlet active, and one with a single row of dilution jets activated, operating at a momentum flux ratio J of 100. The goal of both of these studies is to validate the capabilities of the solver NEK5000 to resolve important flow features inherent to gas turbine combustors by comparing qualitatively to the work of Jakirlic. Both cases show strong evidence of the Precessing Vortex Core, an essential flow feature in gas turbine combustors. Each case captures other important flow characteristics, such as corner eddies, and in general predicts bulk flow movements well. However, the simulations performed quite poorly in terms of predicting turbulence shear stress quantities. Difficulties in properly emulating the turbulent velocity entering the combustor for the swirl, as well as mesh quality concerns, may have skewed the results. Overall, though small length scale quantities were not accurately captured, the large scale quantities were, and this stress test on the HPF LES model will be built upon in future work that looks at more complex combustors.
18

Multi-dimensional Nitric Oxide Emissions Predictor for Preliminary Gas Turbine Combustor Design Optimization

Lanewala, Hasnain 17 March 2014 (has links)
This thesis pertains to development of preliminary combustor design tools for prediction of NOx emissions from aircraft gas turbine combustors. These tools are developed in the form of chemical reactor models and their objective is to predict the formation of NOx based on combustor geometry and engine input parameters such as inlet pressure, inlet temperature, fuel flow and air flow. The construction of the reactor networks follow from cold flow computational fluid dynamics results as it provides a way for allocating volumes to each reactor in the network. The ability of the model to predict NOx has been analysed by comparing predictions with measured data and theoretical trends. The model predictions for different combustors satisfy theoretical trends across various thrust levels in that the model correctly captures the effect of various input parameters on NOx formation and predicts most power conditions for various combustors within 15% of the measured value.
19

Multi-dimensional Nitric Oxide Emissions Predictor for Preliminary Gas Turbine Combustor Design Optimization

Lanewala, Hasnain 17 March 2014 (has links)
This thesis pertains to development of preliminary combustor design tools for prediction of NOx emissions from aircraft gas turbine combustors. These tools are developed in the form of chemical reactor models and their objective is to predict the formation of NOx based on combustor geometry and engine input parameters such as inlet pressure, inlet temperature, fuel flow and air flow. The construction of the reactor networks follow from cold flow computational fluid dynamics results as it provides a way for allocating volumes to each reactor in the network. The ability of the model to predict NOx has been analysed by comparing predictions with measured data and theoretical trends. The model predictions for different combustors satisfy theoretical trends across various thrust levels in that the model correctly captures the effect of various input parameters on NOx formation and predicts most power conditions for various combustors within 15% of the measured value.
20

Heat transfer characteristics of pulse combustors for gas turbine engines

Melia, Thomas January 2012 (has links)
Conventional gas turbine combustors operate with a designed drop in pressure over the length of the device. This is desired in order to encourage mixing within the combustor. Compared to this, pulse pressure gain combustors are an alternative to the conventional combustor that produces an increase in static pressure between the inlet and exhaust of the device. The removal of the combustor pressure loss increases the efficiency of the combustion process by increasing the amount of work produced. Many types of pulsed pressure gain combustors exist. Of these, the valveless pulse combustor is the simplest featuring no moving parts. Whilst some research has been conducted into investigating the performance and workings of a pulse combustor, little has been conducted with the view of cooling the combustor. This has been the focus for the research contained herein. The research has focussed on establishing an understanding of the heat transfer characteristics within a pulse combustor tailpipe. This has involved experimental, analytical and computational research on a pulse combustor as well as on a cold-flow model of a pulse combustor tailpipe. This has enabled a study into the feasibility of cooling a pulse combustor to be conducted. The research has found that for conditions where the unsteady velocity amplitude within the cold-flow model of the pulse combustor tailpipe exceeds the mean velocity, an enhancement to the heat transfer coefficient is measured compared to the value expected in a similar non-oscillating flow. When there is no enhancement to the heat transfer coefficient, the cyclic variation of the unsteady heat flux follows the variation of the unsteady pressure within the device. However, at times of enhancement, the instantaneous heat flux structure shows a large deviation from the structure of the pressure field driving the oscillations. This change is shown to be caused by the reversal in the near-wall velocity and may indicate a mechanism for the enhancement in the mean heat flux. The cooling feasibility study showed that with further investigation, it may be possible to cool a pulse combustor within a gas turbine engine.

Page generated in 0.0515 seconds