1 |
Desenvolvimento e otimização de um código paralelizado para simulação de escoamentos incompressíveis / Development and optimization of a parallel code for the simulation of incompressible flowsRogenski, Josuel Kruppa 06 April 2011 (has links)
O presente trabalho de pesquisa tem por objetivo estudar a paralelização de algoritmos voltados à solução de equações diferenciais parciais. Esses algoritmos são utilizados para gerar a solução numérica das equações de Navier-Stokes em um escoamento bidimensional incompressível de um fluido newtoniano. As derivadas espaciais são calculadas através de um método de diferenças finitas compactas com a utilização de aproximações de altas ordens de precisão. Uma vez que o cálculo de derivadas espaciais com alta ordem de precisão da forma compacta adotado no presente estudo requer a solução de sistemas lineares tridiagonais, é importante realizar estudos voltados a resolução desses sistemas, para se obter uma boa performance. Ressalta-se ainda que a solução de sistemas lineares também faz-se presente na solução numérica da equação de Poisson. Os resultados obtidos decorrentes da solução das equações diferenciais parciais são comparados com os resultados onde se conhece a solução analítica, de forma a verificar a precisão dos métodos implementados. Os resultados do código voltado à resolução das equações de Navier-Stokes paralelizado para simulação de escoamentos incompressíveis são comparados com resultados da teoria de estabilidade linear, para validação do código final. Verifica-se a performance e o speedup do código em questão, comparando-se o tempo total gasto em função do número de elementos de processamento utilizados / The objective of the present work is to study the parallelization of partial differential equations. The aim is to achieve an effective parallelization to generate numerical solution of Navier-Stokes equations in a two-dimensional incompressible and isothermal flow of a Newtonian fluid. The spatial derivatives are calculated using compact finite differences approximations of higher order accuracy. Since the calculation of spatial derivatives with high order adopted in the present work requires the solution of tridiagonal systems, it is important to conduct studies to solve these systems and achieve good performance. In addiction, linear systems solution is also present in the numerical solution of a Poisson equation. The results generated by the solution of partial differential equations are compared to analytical solution, in order to verify the accuracy of the implemented methods. The numerical parallel solution of a Navier-Stokes equations is compared with linear stability theory to validate the final code. The performance and the speedup of the code in question is also checked, comparing the execution time in function of the number of processing elements
|
2 |
A new high-order method for direct numerical simulations of turbulent wall-bounded flowsLenaers, Peter January 2014 (has links)
A new method to perform direct numerical simulations of wall-bounded flows has been developed and implemented. The method uses high-order compact finite differences in wall-normal (for channel flow) or radial direction (for pipe flow) on a collocated grid, which gives high-accuracy results without the effectfof filtering caused by frequent interpolation as required on a staggered grid. The use of compact finite differences means that extreme clustering near the wall leading to small time steps in high-Reynolds number simulations is avoided. The influence matrix method is used to ensure a completely divergence-freesolution and all systems of equations are solved in banded form, which ensures an effcient solution procedure with low requirements for data storage. The method is unique in the sense that exactly divergence-free solutions on collocated meshes are calculated using arbitrary dffierence matrices. The code is validated for two flow cases, i.e. turbulent channel and turbulent pipe flow at relatively low Reynolds number. All tests show excellent agreement with analytical and existing results, confirming the accuracy and robustness ofthe method. The next step is to eciently parallelise the code so that high-Reynolds number simulations at high resolution can be performed. We furthermore investigated rare events occurring in the near-wall region of turbulent wall-bounded flows. We find that negative streamwise velocities and extreme wall-normal velocity uctuations are found rarely (on the order of 0:01%), and that they occur more frequently at higher Reynolds number. These events are caused by strong vortices lying further away from the wall and it appears that these events are universal for wall-bounded flows. / <p>QC 20150303</p>
|
3 |
Desenvolvimento e otimização de um código paralelizado para simulação de escoamentos incompressíveis / Development and optimization of a parallel code for the simulation of incompressible flowsJosuel Kruppa Rogenski 06 April 2011 (has links)
O presente trabalho de pesquisa tem por objetivo estudar a paralelização de algoritmos voltados à solução de equações diferenciais parciais. Esses algoritmos são utilizados para gerar a solução numérica das equações de Navier-Stokes em um escoamento bidimensional incompressível de um fluido newtoniano. As derivadas espaciais são calculadas através de um método de diferenças finitas compactas com a utilização de aproximações de altas ordens de precisão. Uma vez que o cálculo de derivadas espaciais com alta ordem de precisão da forma compacta adotado no presente estudo requer a solução de sistemas lineares tridiagonais, é importante realizar estudos voltados a resolução desses sistemas, para se obter uma boa performance. Ressalta-se ainda que a solução de sistemas lineares também faz-se presente na solução numérica da equação de Poisson. Os resultados obtidos decorrentes da solução das equações diferenciais parciais são comparados com os resultados onde se conhece a solução analítica, de forma a verificar a precisão dos métodos implementados. Os resultados do código voltado à resolução das equações de Navier-Stokes paralelizado para simulação de escoamentos incompressíveis são comparados com resultados da teoria de estabilidade linear, para validação do código final. Verifica-se a performance e o speedup do código em questão, comparando-se o tempo total gasto em função do número de elementos de processamento utilizados / The objective of the present work is to study the parallelization of partial differential equations. The aim is to achieve an effective parallelization to generate numerical solution of Navier-Stokes equations in a two-dimensional incompressible and isothermal flow of a Newtonian fluid. The spatial derivatives are calculated using compact finite differences approximations of higher order accuracy. Since the calculation of spatial derivatives with high order adopted in the present work requires the solution of tridiagonal systems, it is important to conduct studies to solve these systems and achieve good performance. In addiction, linear systems solution is also present in the numerical solution of a Poisson equation. The results generated by the solution of partial differential equations are compared to analytical solution, in order to verify the accuracy of the implemented methods. The numerical parallel solution of a Navier-Stokes equations is compared with linear stability theory to validate the final code. The performance and the speedup of the code in question is also checked, comparing the execution time in function of the number of processing elements
|
4 |
Un nouvel algoritme pour la simulation DNS et LES des ecoulements cavitants / A novel algorithm for DNS and LES simulations of cavitating flowsZnidarcic, Anton 16 December 2016 (has links)
Le couplage diphasique-turbulence est une propriété clé des écoulements cavitants, qui est un frein important à l’amélioration des modèles de cavitation et de turbulence. Réaliser des simulations directes (DNS) est le moyen proposé ici pour s’affranchir du modèle de turbulence et obtenir des informations nouvelles sur les phénomènes mis en jeu. Ce type de simulation est exigeant sur le plan numérique, et requiert le développement d’un solveur spécifique intégrant les spécificités des modèles de cavitation. Cela inclue notamment des schémas de discrétisation d’ordre élevé, un solveur direct, et une résolution multi-domaines associée à une parrallélisation efficace. Une discrétisation par différences compactes finies s’avère être le meilleur choix. La contrainte de rapidité et de parrallélisation impose un algorithme où les systèmes résoudre n’impliquent des multiplications des variables implicites que par des coefficients invariants au cours du calcul. Un nouvel algorithme réunissant ces critères a été développé durant cette thèse, à partir de la combinaison de la méthode de Concus & Golub et d’une méthode de projection, qui permet de résoudre les équations associées à la modélisation homogène de la cavitation. Une nouvelle approche de vérification de ce nouvel algorithme est également proposée et mise en œuvre sur la base de la méthode des solutions manufacturées (MMS). / Cavitation-turbulence interactions are problematic aspect of cavitating flows which imposes limitations in development of better cavitation and turbulence models. DNS simulations with homogeneous mixture approach are proposed to overcome this and offer more insight into the phenomena. As DNS simulations are highly demanding and a variety of cavitation models exists, a tool devoted specifically to them is needed. Such tools usually demand application of highly accurate discretization schemes, direct solvers and multi domain methods enabling good scaling of the codes. As typical cavitating flow geometries impose limits on suitable discretization methods, compact finite differences offer the most appropriate discretization tool. The need for fast solvers and good code scalability leads to request for an algorithm, capable of stable and accurate cavitating flow simulations where solved systems feature multiplication of implicitly treated variables only by constant coefficients. A novel algorithm with such ability was developed in the scope of this work using Concus and Golub method introduced into projection methods, through which the governing equations for homogeneous mixture modeling of cavitating flows can be resolved. Work also proposes an effective and new approach for verification of the new and existing algorithms on the basis of Method of Manufactured Solutions.
|
5 |
Estudo de métodos de interface imersa para as equações de Navier-Stokes / Study of immersed interface methods for the Navier-Stokes equationsReis, Gabriela Aparecida dos 24 June 2016 (has links)
Uma grande limitação dos métodos de diferenças finitas é que eles estão restritos a malhas e domínios retangulares. Para descrever escoamentos em domínios complexos, como, por exemplo, problemas com superfícies livres, faz-se necessário o uso de técnicas acessórias. O método de interfaces imersas é uma dessas técnicas. Nesse trabalho, primeiramente foi desenvolvido um método de projeção, totalmente livre de pressão, para as equações de Navier-Stokes com variáveis primitivas em malha deslocada. Esse método é baseado em diferenças finitas compactas, possuindo segunda ordem temporal e quarta ordem espacial. Esse método foi combinado com o método de interface imersa de Linnick e Fasel [2] para resolver numericamente as equações de Stokes com quarta ordem de precisão. A verificação do código foi feita por meio do método das soluções manufaturadas e da comparação com resultados de outros autores em problemas clássicos da literatura. / A great limitation of finite differences methods is that they are restricted to retangular meshes and domains. In order to describe flows in complex domains, e.g. free surface problems, it is necessary to use accessory techniques. The immersed interface method is one of such techniques. In the present work, firstly, a projection method was developed, which is completely pressure-free, for the Navier-Stokes equations with primitive variables in a staggered mesh. This method is based on compact finite differences, with temporal second-order precision and spatial foruth-order precision. This method was combined with the immersed interface method from Linnick e Fasel [2] in order to numerically solve the Stokes equations with fourth-order precision. The verification of the code was performed with the manufactured solutions method and by comparing results with other authors for some classical problems in the literature.
|
6 |
Simulations numériques d’écoulements incompressibles interagissant avec un corps déformable : application à la nage des poissons / Numerical simulation of incompressible flows interacting with forced deformable bodies : Application to fish swimmingGhaffari Dehkharghani, Seyed Amin 15 December 2014 (has links)
Une méthode numérique précise et efficace est proposée pour la simulation de corps déformables interagissant avec un écoulement incompressible. Les équations de Navier-Stokes, considérées dans leur formulation vorticité fonction de courant, sont discrétisées temporellement et spatialement à l'aide respectivement d'un schéma d'ordre 4 de Runge-Kutta et par des différences finies compactes. Grâce à l'utilisation d'un maillage uniforme, nous proposons un nouveau solveur direct au quatrième ordre pour l'équation de Poisson, permettant de garantir l'incompressibilité au zéro machine sur une grille optimale. L'introduction d'un corps déformable dans l'écoulement de fluide est réalisée au moyen d'une méthode de pénalisation de volume. La déformation du corps est imposée par l'utilisation d'un maillage lagrangien structuré mobile qui interagit avec le fluide environnant en raison des forces hydrodynamiques et du moment (calculés sur le maillage eulérien de référence). Une loi de contrôle efficace de la courbure d'un poisson anguilliforme nageant vers une cible prescrite est proposée. La méthode numérique développée prouve son efficacité et précision tant dans le cas de la nage du poisson mais aussi plus d'un grand nombre de problèmes d'interactions fluide-structure. / We present an efficient algorithm for simulation of deformable bodies interacting with two-dimensional incompressible flows. The temporal and spatial discretizations of the Navier--Stokes equations in vorticity stream-function formulation are based on classical fourth-order Runge--Kutta and compact finite differences, respectively. Using a uniform Cartesian grid we benefit from the advantage of a new fourth-order direct solver for the Poisson equation to ensure the incompressibility constraint down to machine zero over an optimal grid. For introducing a deformable body in fluid flow, the volume penalization method is used. A Lagrangian structured grid with prescribed motion covers the deformable body which is interacting with the surrounding fluid due to the hydrodynamic forces and the torque calculated on the Eulerian reference grid. An efficient law for controlling the curvature of an anguilliform fish, swimming toward a prescribed goal, is proposed which is based on the geometrically exact theory of nonlinear beams and quaternions. Validation of the developed method shows the efficiency and expected accuracy of the algorithm for fish-like swimming and also for a variety of fluid/solid interaction problems.
|
7 |
Estudo de métodos de interface imersa para as equações de Navier-Stokes / Study of immersed interface methods for the Navier-Stokes equationsGabriela Aparecida dos Reis 24 June 2016 (has links)
Uma grande limitação dos métodos de diferenças finitas é que eles estão restritos a malhas e domínios retangulares. Para descrever escoamentos em domínios complexos, como, por exemplo, problemas com superfícies livres, faz-se necessário o uso de técnicas acessórias. O método de interfaces imersas é uma dessas técnicas. Nesse trabalho, primeiramente foi desenvolvido um método de projeção, totalmente livre de pressão, para as equações de Navier-Stokes com variáveis primitivas em malha deslocada. Esse método é baseado em diferenças finitas compactas, possuindo segunda ordem temporal e quarta ordem espacial. Esse método foi combinado com o método de interface imersa de Linnick e Fasel [2] para resolver numericamente as equações de Stokes com quarta ordem de precisão. A verificação do código foi feita por meio do método das soluções manufaturadas e da comparação com resultados de outros autores em problemas clássicos da literatura. / A great limitation of finite differences methods is that they are restricted to retangular meshes and domains. In order to describe flows in complex domains, e.g. free surface problems, it is necessary to use accessory techniques. The immersed interface method is one of such techniques. In the present work, firstly, a projection method was developed, which is completely pressure-free, for the Navier-Stokes equations with primitive variables in a staggered mesh. This method is based on compact finite differences, with temporal second-order precision and spatial foruth-order precision. This method was combined with the immersed interface method from Linnick e Fasel [2] in order to numerically solve the Stokes equations with fourth-order precision. The verification of the code was performed with the manufactured solutions method and by comparing results with other authors for some classical problems in the literature.
|
Page generated in 0.1076 seconds