• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 10
  • 1
  • Tagged with
  • 37
  • 25
  • 11
  • 10
  • 9
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Caractérisation des fonctions des modifications post-traductionnelles de PCNA à l'aide d'un nouvel outil génétique / Characterization of PCNA’s post-translational modification functions using a new genetic tool

Dietsch, Frank 09 April 2019 (has links)
PCNA est une protéine essentielle qui intervient dans de nombreux mécanismes cellulaires et qui possède de nombreuses modifications post-traductionnelles (MPTs) dont les fonctions de certaines, restent encore inconnues. Afin d’étudier la fonction de ces MPTs, nous avons développé un nouvel outil génétique permettant in cellulo, de substituer la protéine endogène PCNA par une version mutée de la protéine appelée version de complémentation. La technique consiste à cotransfecter des cellules en culture avec deux types de plasmides. Un premier plasmide permet l’invalidation du gène de PCNA endogène dans les cellules transfectées par le système CRISPR-Cas9. Le deuxième plasmide dit de complémentation permet l’expression d’une forme mutée de PCNA. Sur l’ensemble d’une banque de mutants testés, deux mutants de PCNA se sont avérés être létaux (D122A et E124A). Nous avons démontré que ces deux sites sont impliqués dans l’initiation d’une voie de dégradation ubiquitine dépendante CRL4Cdt2 essentielle pour la mise en place de la protéolyse d’un cocktail de protéines (cdt1, p21, set8) durant la phase S. Nous avons démontré que les cellules mutantes pour PCNA (D122A et E124A) accumulent la protéine p21. Ce défaut de dégradation de p21 provoque alors des évènements de re-réplication menant à terme à la mort des cellules mutantes. / PCNA is an essential protein that is involved in many cellular mechanisms and has many post-translational modifications (PTMs). The functions of some PTMs, still remain unknown. In order to study the function of these PTMs, we have developed a new genetic tool allowing, in cellulo, the substitution of endogenous PCNA protein with a mutated version of the protein named complementation version. The technique involves cotransfection of the cells in culture with two types of plasmids. A first plasmid allows invalidation of the endogenous PCNA gene in transfected cells by the CRISPR-Cas9 system. The second plasmid, named complementation plasmid allows the expression of a mutated form of PCNA. In the whole bank of tested mutants, two PCNA mutants were found to be lethal (D122A and E124A). We have demonstrated that these two sites are involved in the initiation of an ubiquitin-dependent protein degradation CRL4Cdt2 pathway essential for the proteolysis of a protein cocktail (cdt1, p21, set8) during the S phase. We demonstrated that PCNA mutant cells (D122A and E124A) accumulate p21 protein. This lack of degradation of p21 then causes re-replication events leading ultimately to the mutant cells death.
32

Assemblage oligomérique des récepteurs couplés aux protéines G avec les RAMPs

Héroux, Madeleine 03 1900 (has links)
Les récepteurs couplés aux protéines G (RCPGs) constituent la plus grande classe de récepteurs membranaires impliqués dans la transmission des signaux extracellulaires. Traditionnellement, la transmission de la signalisation par les RCPGs implique l’activation d’une protéine G hétéro-trimérique qui pourra à son tour moduler l’activité de divers effecteurs intracellulaires. Ce schéma classique de signalisation s’est complexifié au fils des années et l’on sait maintenant qu’en plus d’interagir avec les protéines G, les RCPGs s’associent avec une panoplie d’autres protéines afin de transmettre adéquatement les signaux extracellulaires. En particulier, la découverte d’une famille de protéines transmembranaires modulant la fonction des RCPGs, baptisées protéines modifiant l’activité des récepteurs (« receptor activity-modifying proteins » ; RAMPs), a changé la façon de concevoir la signalisation par certains RCPGs. Dans le cas du récepteur similaire au récepteur de la calcitonine (« calcitonin-like receptor » ; CLR), l’association avec les RAMPs permet l’acheminement à la surface cellulaire du récepteur tout en modulant ses propriétés pharmacologiques. Lorsqu’il est associé avec RAMP1, le CLR fonctionne comme un récepteur du peptide relié au gène de la calcitonine (« calcitonin gene-related peptide » ; CGRP), alors qu’il devient un récepteur de l’adrénomedulline lorsqu’il interagit avec RAMP2 ou RAMP3. D’autre part, en plus d’interagir avec des protéines accessoires transmembranaires telles les RAMPs, les RCPGs peuvent aussi s’associer entre eux pour former des oligomères de récepteurs. Dans cette thèse, nous nous sommes penchés sur les interactions entre les RCPGs et les RAMPs, et plus particulièrement sur l’interrelation entre ce type d’association RCPG/RAMP et l’assemblage en oligomères de récepteurs, en utilisant le récepteur du CGRP comme modèle d’étude. Une première étude nous a tout d’abord permis de confirmer l’interaction entre le récepteur CLR et RAMP1, dans un contexte de cellules vivantes. Nous avons démontré que ce complexe CLR/RAMP1 active la protéine G et recrute la protéine de signalisation -arrestine suite à une stimulation par le CGRP. Ensuite, nous avons déterminé que même s’il doit obligatoirement former un hétéro-oligomère avec les RAMPs pour être actif, le CLR conserve malgré tout sa capacité à interagir avec d’autres RCPGs. En plus d’observer la présence d’homo-oligomère de CLR, nous avons constaté que tout comme les RCPGs, les RAMPs peuvent eux-aussi s’associer entre eux pour former des complexes oligomériques pouvant comprendre différents sous-types (RAMP1/RAMP2 et RAMP1/RAMP3). Cette observation de la présence d’homo-oligomères de CLR et de RAMP1, nous a amené à nous questionner sur la stœchiométrie d’interaction du complexe CLR/RAMP1. Dans une deuxième étude ayant pour but d’établir la composition moléculaire du récepteur CGRP1 in vivo, nous avons développé une nouvelle approche permettant l’étude de l’interaction entre trois protéines dans un contexte de cellules vivantes. Cette technique baptisée BRET/BiFC, est basée sur le transfert d’énergie de résonance de bioluminescence entre un donneur luminescent, la Renilla luciférase, et un accepteur fluorescent, la protéine fluorescente jaune (YFP), reconstituée suite au ré-assemblage de ces deux fragments. En utilisant cette approche, nous avons pu déterminer que le récepteur CGRP1 est constitué d’un homo-oligomère de CLR interagissant avec un monomère de RAMP1. En démontrant un assemblage oligomérique asymétrique pour le récepteur CGRP1 à partir d’une nouvelle approche biophysique, nous croyons que les travaux présentés dans cette thèse ont contribué à élargir nos connaissances sur le fonctionnement de la grande famille des RCPGs, et seront utile à la poursuite des recherches sur les complexes protéiques impliqués dans la signalisation. / G protein coupled receptors (GPCRs) constitute the largest family of membrane receptors involved in signal transduction. Traditionally, signal transduction by GPCRs involves the activation of a hetero-trimeric G protein which will then modulate the activity of several intracellular effectors. We can now appreciate the fact that in addition to their interaction with G proteins, GPCRs also associate with several other proteins, in order to allow proper signal transduction. In particular, the discovery of a family of proteins called receptor activity-modifying proteins (RAMPs) has challenged the traditional views of signal transduction by some GPCRs. In the case of the calcitonin-like receptor (CLR), the association with RAMPs allows the proper cell surface targeting of the receptor in addition to modulate it’s pharmacological properties. Co-expression of CLR with RAMP1 leads to a calcitonin gene-related peptide (CGRP) receptor, whereas CLR association with RAMP2 or RAMP3 promotes the formation of an adrenomedullin receptor. In addition to their interaction with transmembrane accessory proteins such as RAMPs, GPCRs can also interact with other receptors to form receptors oligomers. In this thesis, we were interested in the interactions between GPCRs and RAMPs, and particularly, in the link between these GPCR/RAMP interactions and the assembly of receptor oligomers, using CGRP1 receptor as a model. We first confirmed the interaction between CLR and RAMP1 in living cells. We showed that this CLR/RAMP1 complex activates G proteins and recruits the signalling protein -arrestin upon CGRP stimulation. Next, we demonstrated that even if the CLR requires hetero-oligomeric assembly with RAMPs in order to be active, this receptor can still interact with other GPCRs. In addition to CLR homo-oligomers, we observed that RAMPs can also self-associate to form oligomeric complexes which can involve different subtypes (RAMP1/RAMP2 and RAMP1/RAMP3). This observation of the presence of CLR and RAMP1 homo-oligomers raised the question of the stoiechiometry of interaction of the CLR/RAMP1 complex. In order to establish the molecular composition of the CGRP1 receptor in vivo, we developed a novel approach allowing the detection of the interaction between three proteins in living cells. This method called BRET/BiFC is based on the bioluminescence resonance energy transfer between a luminescent energy donor, Renilla luciferase, and a fluorescent energy acceptor, the yellow fluorescent protein (YFP), reconstituted after the re-association of its two fragments. Using this approach, we showed that the CGRP1 receptor consist of a homo-oligomer of CLR interacting with a monomer of RAMP1. By demonstrating the asymmetrical organization of the CGRP1 receptor complex using a novel biophysical approach, we believe that the results presented herein have contributed to increase our knowledge of the mechanisms of function of the large family of GPCRs and will be useful for the pursuit of research on protein complexes involved in signalling pathways.
33

Caractérisation d'une famille de récepteurs kinases impliqués dans le développement gamétophytique chez Arabidopsis thaliana

Houde, Josée 02 1900 (has links)
Au cours du développement des végétaux, de l’établissement de l’identité cellulaire des premiers organes au guidage du tube pollinique, la communication cellule à cellule est d’une importance capitale. En réponse, les voies de signalisation moléculaires sont élaborées pour la perception d’un signal extérieur et la transduction en une réponse génique via une cascade intracellulaire. Les récepteurs kinases font partie des protéines perceptrices des stimuli et constituent chez les plantes une catégorie de protéines avec une occurrence considérable, mais dont très peu d’informations détaillées sont disponibles à ce jour. Une famille de récepteurs kinases chez Arabidopsis thaliana, AtORK11 (Arabidopsis thaliana Ovule Receptor Kinase 11), a été identifiée par orthologie à un récepteur spécifique aux ovaires chez une solanacéee sauvage, Solanum chacoense. La fonction présumée de cette famille de récepteurs kinases de type leucine-rich repeat, suggérée par son patron d’expression, implique les événements relatifs au développement des gamétophytes et à la reproduction. Afin de caractériser la fonction des quatre gènes de la famille (AtORK11a, AtORK11b, AtORK11c et AtORK11d) une stratégie d’analyse de mutants d’insertion de l’ADN-T et d’évaluation du mode d’action par complémentation bimoléculaire par fluorescence (BiFC) a été entreprise. Aucune fonction précise n’a pu être attribuée aux doubles mutants d’insertion, par contre la surexpression d’une construction dominante négative indique un rôle dans le développement gamétophytique. Il a aussi été démontré que les quatre récepteurs peuvent interagir par homodimérisation aussi bien que par hétérodimérisation. Une hypothèse de redondance fonctionnelle est ainsi mise à jour parmi la famille des gènes AtORK11. / Cell to cell communication is paramount during plant developmental processes, from cellular identity in early organogenesis to pollen tube guidance. In response to this requirement, molecular cell signalling is used to perceive an external signal and transduce the response by an intracellular signalling cascade leading to specific gene activation. The sensing protein is typically a receptor kinase, which will transduce the stimulus by phosphorylation of a cytoplasmic interaction partner. Although plant receptor kinases represent the largest protein kinase family, only handfuls are well characterized. By sequence identity (orthology), a family of leucine-rich repeat receptor kinases from Arabidopsis thaliana was identified as AtORK11 (Arabidopsis thaliana Ovule Receptor Kinase 11). Based upon previous results from its ortholog in Solanum chacoense, the ovary- specific ScORK11 receptor kinase, we hypothesized that members of the AtORK11 receptors would be involved in gametophyte development and reproduction. In order to characterize the role of the four family members (AtORK11a, AtORK11b, AtORK11c and AtORK11d), a T-DNA insertional mutant strategy was undertaken, as well as bimolecular fluorescence complementation assays (BiFC). No precise function could be assigned to the double mutants although a dominant negative strategy revealed an involvement in gametophytic development. It was also shown that all of the receptors could form homodimers as well as heterodimers in a heterologous system, suggesting high functional redundancy for the AtORK11 family.
34

Caractérisation des polycétones synthases intervenant dans la biosynthèse d’ochratoxine A, d’acide pénicillique, d’asperlactone et d’isoasperlactone chez aspergillus westerdijkiae / Caracterization of the polyketide synthases involved in biosynthesis of ochratoxin A, penicillic acid, asperlactone and isoasperlactone in aspergillus westerdijkiae (a molecular approach)

Bacha, Nafees 15 September 2009 (has links)
Aspergillus westerdijkiaem qui est récemment démembré d'A. ochraceus est un producteur principal de plusieurs composés de type polycétone d'importance économique. Ces composés incluent l’ochratoxin A, mellein, l'acide penicillique, asperlactone et l’isoasperlactone et quelques intermédiaires comme l'acide 6- methylsalicylique et l’acide orsellinique. La biosynthèse de ces métabolites est catalysée par un groupe d'enzymes connues comme la polycétone synthases (PKSs). Ce travail a été visé pour cloner et a caractérisé fonctionnellement les différentes genes des PKS i.e. aoks1, aolc35-12 et aomsas, et de genes de polyketide synthases-non ribosomal peptide synthase (PKS-NRPS) i.e. aolc35-6, chez A. westerdijkiae. Ces gènes ont été inactivés par l'insertion du gène d’hygromycine B phosphotransferase d’Escherichia coli dans le génome d'A. westerdijkiae, pour obtenir les mutantes ao?ks1, ao?lc35-12, ao?msas et ao?lc35-6. Les mutants ao?ks1 et ao?lc35-12 ont été trouvés déficients dans la biosynthèse d’ochratoxin A, mais produisaient encore mellein. À notre connaissance, c’est la première fois que nous avons caractérisé les gènes impliquées dans la biosynthèse d’OTA, sachant que mellein, qui était proposé dans la littérature comme un intermédiaire, joue a cune role dans la biosynthesis de l'OTA. Ensuite le mutant ao?msas n'a pas seulement perdu la capacité de produire isoasperlactone et asperlactone, mais aussi il ne produit pas l’intermédiaire acide 6-methylsalicylique. Basé sur les expériences de la caractérisation génétique et de complémentation chimiques, nous avons proposé un shéma hypothétique de la biosynthèse d’asperlactone et isoasperlactone dans lequel l'acide 6-methylsalicylique, diepoxide et aspyrone jouent le rôle d’intermédiaires. La techniques de gène knock-out et de la reverse transcription PCR (RT-PCR) ont montré que seulle gène de type PKS-NRPS « aolc35-6 » identifié chez A. westerdijkiae codant pour un intermédiaire inconnu(s) qui pourrait inciter l'expression de gène aomsas et un gène impliqué dans la biosynthèse d'acide orsellinique et d'acide penicillique. / Aspergillus westerdijkiaem which is recently dismembered from A. ochraceusm is the principal producer of several economically important polyketide metabolites. These metabolites include ochratoxin A, mellein, penicillic acid, asperlactone and isoasperlactone and some intermediates like orsellinic acid and 6-methylsalicylic acid. The biosynthesis of these metabolites is catalyzed by a group of enzymes known as polyketide synthases (PKSs). This work was aimed to clone and functionally characterized various PKS i.e. aoks1, aolc35-12 and aomsas, and polyketide synthasesnon ribosomal peptide synthase (PKS-NRPS) genes i.e. aolc35-6, in A. westerdijkiae. These genes were inactivated by the insertion of Escherichia coli hygromycin B phosphotransferase gene in the genome of A. westerdijkiae to obtain ao?ks1, ao?lc35-12, ao?msas and ao?lc35-6 mutants. ao?ks1, ao?lc35-12 mutants were found deficient in ochratoxin A biosynthesis but are still producing mellein. To our knowledge, we for the first time characterized a gene involved in OTA biosynthesis, with the information about mellein which was proposed in the literature to be an intermediate OTA. Further ao?msas mutant not only lost the capacity to produce isoasperlactone and asperlactone but also the intermediate nature product 6-methylsalicylic acid. Based on the genetic characterization and chemical complementation experiments, we have proposed a hypothetical pathway mentioning that 6-methylsalicylic acid, diepoxid and aspyrone are intermediates of isoasperlactone and asperlactone. Gene knockout technique and reverse transcription PCR (RT-PCR) shown that the only PKS-NRPS gene aolc35-6 so far identified in A. westerdijkiae encoding certain unknown intermediate(s) which induces the expression of aomsas gene and a gene involved in the biosynthesis of orsellinic acid and penicillic acid.
35

Dissecting cell cycle protein complexes using the pptimized yeast cytosine deaminase protein-fragment complementation assay “You too can play with an edge”

Ear, Po Hien 11 1900 (has links)
Les protéines sont les produits finaux de la machinerie génétique. Elles jouent des rôles essentiels dans la définition de la structure, de l'intégrité et de la dynamique de la cellule afin de promouvoir les diverses transformations chimiques requises dans le métabolisme et dans la transmission des signaux biochimique. Nous savons que la doctrine centrale de la biologie moléculaire: un gène = un ARN messager = une protéine, est une simplification grossière du système biologique. En effet, plusieurs ARN messagers peuvent provenir d’un seul gène grâce à l’épissage alternatif. De plus, une protéine peut adopter plusieurs fonctions au courant de sa vie selon son état de modification post-traductionelle, sa conformation et son interaction avec d’autres protéines. La formation de complexes protéiques peut, en elle-même, être déterminée par l’état de modifications des protéines influencées par le contexte génétique, les compartiments subcellulaires, les conditions environmentales ou être intrinsèque à la croissance et la division cellulaire. Les complexes protéiques impliqués dans la régulation du cycle cellulaire sont particulièrement difficiles à disséquer car ils ne se forment qu’au cours de phases spécifiques du cycle cellulaire, ils sont fortement régulés par les modifications post-traductionnelles et peuvent se produire dans tous les compartiments subcellulaires. À ce jour, aucune méthode générale n’a été développée pour permettre une dissection fine de ces complexes macromoléculaires. L'objectif de cette thèse est d'établir et de démontrer une nouvelle stratégie pour disséquer les complexes protéines formés lors du cycle cellulaire de la levure Saccharomyces cerevisiae (S. cerevisiae). Dans cette thèse, je décris le développement et l'optimisation d'une stratégie simple de sélection basée sur un essai de complémentation de fragments protéiques en utilisant la cytosine déaminase de la levure comme sonde (PCA OyCD). En outre, je décris une série d'études de validation du PCA OyCD afin de l’utiliser pour disséquer les mécanismes d'activation des facteurs de transcription et des interactions protéine-protéines (IPPs) entre les régulateurs du cycle cellulaire. Une caractéristique clé du PCA OyCD est qu'il peut être utilisé pour détecter à la fois la formation et la dissociation des IPPs et émettre un signal détectable (la croissance des cellules) pour les deux types de sélections. J'ai appliqué le PCA OyCD pour disséquer les interactions entre SBF et MBF, deux facteurs de transcription clés régulant la transition de la phase G1 à la phase S. SBF et MBF sont deux facteurs de transcription hétérodimériques composés de deux sous-unités : une protéine qui peut lier directement l’ADN (Swi4 ou Mbp1, respectivement) et une protéine commune contenant un domain d’activation de la transcription appelée Swi6. J'ai appliqué le PCA OyCD afin de générer un mutant de Swi6 qui restreint ses activités transcriptionnelles à SBF, abolissant l’activité MBF. Nous avons isolé des souches portant des mutations dans le domaine C-terminal de Swi6, préalablement identifié comme responsable dans la formation de l’interaction avec Swi4 et Mbp1, et également important pour les activités de SBF et MBF. Nos résultats appuient un modèle où Swi6 subit un changement conformationnel lors de la liaison à Swi4 ou Mbp1. De plus, ce mutant de Swi6 a été utilisé pour disséquer le mécanisme de régulation de l’entrée de la cellule dans un nouveau cycle de division cellulaire appelé « START ». Nous avons constaté que le répresseur de SBF et MBF nommé Whi5 se lie directement au domaine C-terminal de Swi6. Finalement, j'ai appliqué le PCA OyCD afin de disséquer les complexes protéiques de la kinase cycline-dépendante de la levure nommé Cdk1. Cdk1 est la kinase essentielle qui régule la progression du cycle cellulaire et peut phosphoryler un grand nombre de substrats différents en s'associant à l'une des neuf protéines cycline régulatrice (Cln1-3, Clb1-6). Je décris une stratégie à haut débit, voir à une échelle génomique, visant à identifier les partenaires d'interaction de Cdk1 et d’y associer la cycline appropriée(s) requise(s) à l’observation d’une interaction en utilisant le PCA OyCD et des souches délétées pour chacune des cyclines. Mes résultats nous permettent d’identifier la phase(s) du cycle cellulaire où Cdk1 peut phosphoryler un substrat particulier et la fonction potentielle ou connue de Cdk1 pendant cette phase. Par exemple, nous avons identifié que l’interaction entre Cdk1 et la γ-tubuline (Tub4) est dépendante de Clb3. Ce résultat est conforme au rôle de Tub4 dans la nucléation et la croissance des faisceaux mitotiques émanant des centromères. Cette stratégie peut également être appliquée à l’étude d'autres IPPs qui sont contrôlées par des sous-unités régulatrices. / Proteins are the end-products of gene interpretative machinery. Proteins serve essential roles in defining the structure, integrity and dynamics of the cell and mediate most chemical transformations needed for everything from metabolic catalysis to signal transduction. We know that the central dogma of molecular biology, one gene = one mRNA = one protein is a gross simplification and that a protein may do different things depending on the form in which its mRNA was spliced, how and where it is post-translationally modified, what conformational state it may be in or finally, which other proteins it may interact with. Formation of protein complexes may, themselves, be governed by the states in which proteins are expressed in specific cells, cellular compartments or under specific conditions or dynamic phases such has growth or division. Protein complexes involved in mitotic cell cycle regulation are particularly challenging to dissect since they could only form during specific phases of the cell cycle, are highly regulated by post-translational modifications and can be found in any subcellular compartments. To date, no general methods have been developed to allow fine dissection of these protein complexes. The goal of this thesis was to establish and demonstrate a novel strategy for dissecting protein complexes regulating the budding yeast Saccharomyces cerevisiae (S. cerevisiae) mitotic cell cycle. In this thesis, I describe my development and optimization of a simple survival-selection Protein-fragment Complementation Assay using the prodrug-converting enzyme, yeast cytosine deaminase as reporter (OyCD PCA). I further describe, in a series of proof of principle studies, applications of the OyCD PCA to dissect the mechanism of transcriptional activation by key mitotic transcription factors and to dissect protein-protein interactions (PPIs) among regulators of the mitotic cell cycle. A key feature of the OyCD PCA is that it can be used to detect both formation and disruption of PPIs by virtue of having positive readouts for both assays. I applied the OyCD PCA in a strategy to dissect interactions between the key transcription factors of the G1/S phase: SBF and MBF. These two heterodimeric transcription factors are composed of, respectively, two distinct DNA-binding subunits named Swi4 and Mbp1 and a common transcription activation subunit called Swi6. I took advantage of the dual selection by OyCD PCA to engineer a specific mutant of Swi6 in order to demonstrate the rewiring of a transcriptional network. We isolated Swi6 with mutations found in its C-terminal domain previously identified for binding Swi4 and Mbp1 and important for SBF and MBF activities. Our results support a model where Swi6 undergoes a conformational change upon binding to Swi4 or Mbp1. In addition, this Swi6 mutant was used to dissect the regulatory mechanism that governs the entry of S. cerevisiae to a new round of cell division also known as START. We found that the SBF and MBF repressor Whi5 directly binds to the C-terminal domain of Swi6. Finally, I applied the OyCD PCA to dissect the yeast cyclin dependent kinase Cdk1-protein complexes. Cdk1 is the essential kinase that regulates cell cycle progression and can phosphorylate a large number of different substrates by teaming up with one of nine cyclin regulatory proteins (Cln1-3, Clb1-6). I describe a strategy to identify interaction partners of Cdk1 that can easily be scaled up for a genome-wide screen and associate the complexes with the appropriate cyclin(s) required for mediating the interaction using the OyCD PCA and deletion of the cyclin genes. My results allow us to postulate which phase(s) of the mitotic cell cycle Cdk1 may phosphorylate proteins and what function potential or known substrates of Cdk1 may take on during that phase(s). For example, we identified the interaction between Cdk1 and the γ-tubulin (Tub4) to be dependent upon Clb3, consistent with its role in mediating nucleation and growth of mitotic microtubule bundles on the spindle pole body. This strategy can also be applied to study other PPIs that are contingent upon accessory subunits.
36

Dissecting cell cycle protein complexes using the pptimized yeast cytosine deaminase protein-fragment complementation assay “You too can play with an edge”

Ear, Po Hien 11 1900 (has links)
Les protéines sont les produits finaux de la machinerie génétique. Elles jouent des rôles essentiels dans la définition de la structure, de l'intégrité et de la dynamique de la cellule afin de promouvoir les diverses transformations chimiques requises dans le métabolisme et dans la transmission des signaux biochimique. Nous savons que la doctrine centrale de la biologie moléculaire: un gène = un ARN messager = une protéine, est une simplification grossière du système biologique. En effet, plusieurs ARN messagers peuvent provenir d’un seul gène grâce à l’épissage alternatif. De plus, une protéine peut adopter plusieurs fonctions au courant de sa vie selon son état de modification post-traductionelle, sa conformation et son interaction avec d’autres protéines. La formation de complexes protéiques peut, en elle-même, être déterminée par l’état de modifications des protéines influencées par le contexte génétique, les compartiments subcellulaires, les conditions environmentales ou être intrinsèque à la croissance et la division cellulaire. Les complexes protéiques impliqués dans la régulation du cycle cellulaire sont particulièrement difficiles à disséquer car ils ne se forment qu’au cours de phases spécifiques du cycle cellulaire, ils sont fortement régulés par les modifications post-traductionnelles et peuvent se produire dans tous les compartiments subcellulaires. À ce jour, aucune méthode générale n’a été développée pour permettre une dissection fine de ces complexes macromoléculaires. L'objectif de cette thèse est d'établir et de démontrer une nouvelle stratégie pour disséquer les complexes protéines formés lors du cycle cellulaire de la levure Saccharomyces cerevisiae (S. cerevisiae). Dans cette thèse, je décris le développement et l'optimisation d'une stratégie simple de sélection basée sur un essai de complémentation de fragments protéiques en utilisant la cytosine déaminase de la levure comme sonde (PCA OyCD). En outre, je décris une série d'études de validation du PCA OyCD afin de l’utiliser pour disséquer les mécanismes d'activation des facteurs de transcription et des interactions protéine-protéines (IPPs) entre les régulateurs du cycle cellulaire. Une caractéristique clé du PCA OyCD est qu'il peut être utilisé pour détecter à la fois la formation et la dissociation des IPPs et émettre un signal détectable (la croissance des cellules) pour les deux types de sélections. J'ai appliqué le PCA OyCD pour disséquer les interactions entre SBF et MBF, deux facteurs de transcription clés régulant la transition de la phase G1 à la phase S. SBF et MBF sont deux facteurs de transcription hétérodimériques composés de deux sous-unités : une protéine qui peut lier directement l’ADN (Swi4 ou Mbp1, respectivement) et une protéine commune contenant un domain d’activation de la transcription appelée Swi6. J'ai appliqué le PCA OyCD afin de générer un mutant de Swi6 qui restreint ses activités transcriptionnelles à SBF, abolissant l’activité MBF. Nous avons isolé des souches portant des mutations dans le domaine C-terminal de Swi6, préalablement identifié comme responsable dans la formation de l’interaction avec Swi4 et Mbp1, et également important pour les activités de SBF et MBF. Nos résultats appuient un modèle où Swi6 subit un changement conformationnel lors de la liaison à Swi4 ou Mbp1. De plus, ce mutant de Swi6 a été utilisé pour disséquer le mécanisme de régulation de l’entrée de la cellule dans un nouveau cycle de division cellulaire appelé « START ». Nous avons constaté que le répresseur de SBF et MBF nommé Whi5 se lie directement au domaine C-terminal de Swi6. Finalement, j'ai appliqué le PCA OyCD afin de disséquer les complexes protéiques de la kinase cycline-dépendante de la levure nommé Cdk1. Cdk1 est la kinase essentielle qui régule la progression du cycle cellulaire et peut phosphoryler un grand nombre de substrats différents en s'associant à l'une des neuf protéines cycline régulatrice (Cln1-3, Clb1-6). Je décris une stratégie à haut débit, voir à une échelle génomique, visant à identifier les partenaires d'interaction de Cdk1 et d’y associer la cycline appropriée(s) requise(s) à l’observation d’une interaction en utilisant le PCA OyCD et des souches délétées pour chacune des cyclines. Mes résultats nous permettent d’identifier la phase(s) du cycle cellulaire où Cdk1 peut phosphoryler un substrat particulier et la fonction potentielle ou connue de Cdk1 pendant cette phase. Par exemple, nous avons identifié que l’interaction entre Cdk1 et la γ-tubuline (Tub4) est dépendante de Clb3. Ce résultat est conforme au rôle de Tub4 dans la nucléation et la croissance des faisceaux mitotiques émanant des centromères. Cette stratégie peut également être appliquée à l’étude d'autres IPPs qui sont contrôlées par des sous-unités régulatrices. / Proteins are the end-products of gene interpretative machinery. Proteins serve essential roles in defining the structure, integrity and dynamics of the cell and mediate most chemical transformations needed for everything from metabolic catalysis to signal transduction. We know that the central dogma of molecular biology, one gene = one mRNA = one protein is a gross simplification and that a protein may do different things depending on the form in which its mRNA was spliced, how and where it is post-translationally modified, what conformational state it may be in or finally, which other proteins it may interact with. Formation of protein complexes may, themselves, be governed by the states in which proteins are expressed in specific cells, cellular compartments or under specific conditions or dynamic phases such has growth or division. Protein complexes involved in mitotic cell cycle regulation are particularly challenging to dissect since they could only form during specific phases of the cell cycle, are highly regulated by post-translational modifications and can be found in any subcellular compartments. To date, no general methods have been developed to allow fine dissection of these protein complexes. The goal of this thesis was to establish and demonstrate a novel strategy for dissecting protein complexes regulating the budding yeast Saccharomyces cerevisiae (S. cerevisiae) mitotic cell cycle. In this thesis, I describe my development and optimization of a simple survival-selection Protein-fragment Complementation Assay using the prodrug-converting enzyme, yeast cytosine deaminase as reporter (OyCD PCA). I further describe, in a series of proof of principle studies, applications of the OyCD PCA to dissect the mechanism of transcriptional activation by key mitotic transcription factors and to dissect protein-protein interactions (PPIs) among regulators of the mitotic cell cycle. A key feature of the OyCD PCA is that it can be used to detect both formation and disruption of PPIs by virtue of having positive readouts for both assays. I applied the OyCD PCA in a strategy to dissect interactions between the key transcription factors of the G1/S phase: SBF and MBF. These two heterodimeric transcription factors are composed of, respectively, two distinct DNA-binding subunits named Swi4 and Mbp1 and a common transcription activation subunit called Swi6. I took advantage of the dual selection by OyCD PCA to engineer a specific mutant of Swi6 in order to demonstrate the rewiring of a transcriptional network. We isolated Swi6 with mutations found in its C-terminal domain previously identified for binding Swi4 and Mbp1 and important for SBF and MBF activities. Our results support a model where Swi6 undergoes a conformational change upon binding to Swi4 or Mbp1. In addition, this Swi6 mutant was used to dissect the regulatory mechanism that governs the entry of S. cerevisiae to a new round of cell division also known as START. We found that the SBF and MBF repressor Whi5 directly binds to the C-terminal domain of Swi6. Finally, I applied the OyCD PCA to dissect the yeast cyclin dependent kinase Cdk1-protein complexes. Cdk1 is the essential kinase that regulates cell cycle progression and can phosphorylate a large number of different substrates by teaming up with one of nine cyclin regulatory proteins (Cln1-3, Clb1-6). I describe a strategy to identify interaction partners of Cdk1 that can easily be scaled up for a genome-wide screen and associate the complexes with the appropriate cyclin(s) required for mediating the interaction using the OyCD PCA and deletion of the cyclin genes. My results allow us to postulate which phase(s) of the mitotic cell cycle Cdk1 may phosphorylate proteins and what function potential or known substrates of Cdk1 may take on during that phase(s). For example, we identified the interaction between Cdk1 and the γ-tubulin (Tub4) to be dependent upon Clb3, consistent with its role in mediating nucleation and growth of mitotic microtubule bundles on the spindle pole body. This strategy can also be applied to study other PPIs that are contingent upon accessory subunits.
37

Beyond hairballs: depicting complexity of a kinase-phosphatase network in the budding yeast

Abd-Rabbo, Diala 01 1900 (has links)
No description available.

Page generated in 0.1114 seconds