1 |
Fractal Structure and Complexity Matching in Naturalistic Human BehaviorRigoli, Lillian M. 24 September 2018 (has links)
No description available.
|
2 |
Synchronisation avec des rythmes fractals : Appariement de la complexité des structures statistiques / Synchronization with fractal rhythms : Complexity matching of statistical structureMarmelat, Vivien 24 October 2014 (has links)
La variabilité des mouvements humains est caractérisée par la présence de corrélations à long-terme, ou fluctuations fractales. Cette propriété est associée à des états sains et optimaux, tandis que les états non-optimaux sont associés avec une perte des corrélations à long-terme, devenant plus périodique ou plus aléatoire. Les métronomes isochrones sont largement utilisés pour guider le pas dans des protocoles de réhabilitation de la marche, mais leur utilisation modifie la dynamique des séries de pas qui ne présentent plus de corrélations à long-terme (persistantes) mais deviennent anti-persistante (i.e., corrélations négative). Des hypothèses récentes suggèrent que la synchronisation avec un environnement fractal pourrait induire un appariement de la structure temporelle de l'organisme avec la structure temporelle de l'environnement. L'objectif de cette thèse était de tester des stratégies de synchronisation alternatives préservant la nature fractale des séries temporelles. Différentes expérimentations ont été mises en places, impliquant des coordinations interpersonnelles, de la synchronisation avec des métronomes fractals et du « guidage humain ». De manière générale, nos résultats montrent que les séries comportementales des participants étaient corrélée à celle de l'environnement seulement si celui-ci présente des fluctuations fractales. Les résultats de nos modélisations suggèrent également que les métronomes isochrones et non-isochrones impliquent des réactions comportementales fondamentalement différentes. Nos résultats présentent des perspectives cliniques puisque l'élaboration de protocoles de réhabilitation de la marche utilisant des environnements fractals pourrait permettre de préserver les corrélations à long-terme, marqueurs d'adaptabilité du comportement. / Human movements variability is characterized by the presence of long-range (fractal) correlations. This feature is associated with optimal, healthy states while non-optimal states are associated with a loss of long-range correlations, toward more periodicity or more randomness. Isochronous pacing is widely used for gait rehabilitation, but changes the stride time dynamics from persistent long-range correlations to anti-persistent (negative) correlations. It has been recently argued that synchronization with fractal environment could induce a matching between the organism structure and the environmental structure. The aim of this thesis was to test alternatives pacing strategies preserving the fractal nature of stride time series. Different sets of experiments were run, involving interpersonal coordination, synchronization with non-isochronous metronomes and “human pacing”. Overall our results show that the time series produced by participants were correlated to those of the environment only if the environment presented fractal fluctuations. Our models suggest that isochronous and non-isochronous metronomes imply fundamental different behaviours. Our results have clinical perspectives because the use of fractal environment in rehabilitation protocols could help to preserve long-range correlations, a hallmark of behavioural adaptability.
|
3 |
Emergence of Cooperation and Homeodynamics as a Result of Self Organized Temporal Criticality: From Biology to PhysicsMahmoodi, Korosh 08 1900 (has links)
This dissertation is an attempt at establishing a bridge between biology and physics leading naturally from the field of phase transitions in physics to the cooperative nature of living systems. We show that this aim can be realized by supplementing the current field of evolutionary game theory with a new form of self-organized temporal criticality. In the case of ordinary criticality, the units of a system choosing either cooperation or defection under the influence of the choices done by their nearest neighbors, undergo a significant change of behavior when the intensity of social influence has a critical value. At criticality, the behavior of the individual units is correlated with that of all other units, in addition to the behavior of the nearest neighbors. The spontaneous transition to criticality of this work is realized as follows: the units change their behavior (defection or cooperation) under the social influence of their nearest neighbors and update the intensity of their social influence spontaneously by the feedback they get from the payoffs of the game (environment). If units, which are selfish, get higher benefit with respect to their previous play, they increase their interest to interact with other units and vice versa. Doing this, the behavior of single units and the whole system spontaneously evolve towards criticality, thereby realizing a global behavior favoring cooperation. In the case when the interacting units are oscillators with their own periodicity, homeodynamics concerns, the individual payoff is the synchronization with the nearest neighbors (i.e., lowering the energy of the system), the spontaneous transition to criticality generates fluctuations characterized by the joint action of periodicity and crucial events of the same kind as those revealed by the current analysis of the dynamics of the brain. This result is expected to explain the efficiency of enzyme catalyzers, on the basis of a new non-equilibrium statistical physics. We argue that the results obtained apply to sociological and psychological systems as well as to elementary biological systems.
|
Page generated in 0.0685 seconds