• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Liquid Dispersions and Fiber Spinning of Boron Nitride Nanotubes Combined With Polyvinyl Alcohol

Khoury, Joe Farid 24 June 2021 (has links)
No description available.
2

Design, Fabrication and Characterization of PVA/Nanocarbon Composite Fibers

January 2018 (has links)
abstract: Polymer fibers have broad applications in wearable electronics, bulletproof vests, batteries, fuel cells, filters, electrodes, conductive wires, and biomedical materials. Polymer fibers display light density and flexibility but are mostly weak and compliant. The ceramic, metallic, and carbon nanoparticles have been frequently included in polymers for fabricating continuous, durable, and functional composite fibers. Nanoparticles display large specific areas, low defect density and can transfer their superior properties to polymer matrices. The main focus of this thesis is to design, fabricate and characterize the polymer/nanocarbon composite fibers with unique microstructures and improved mechanical/thermal performance. The dispersions and morphologies of graphene nanoplatelets (GNPs), the interactions with polyvinyl alcohol (PVA) molecules and their influences on fiber properties are studied. The fibers were fabricated using a dry-jet wet spinning method with engineered spinneret design. Three different structured fibers were fabricated, namely, one-phase polymer fiber (1-phase), two-phase core-shell composite fiber (2-phase), and three-phase co-axial composite fiber (3-phase). These polymer or composite fibers were processed at three stages with drawing temperatures of 100˚C, 150˚C, and 200˚C. Different techniques including the mechanical tester, wide-angle X-Ray diffraction (WAXD), scanning electron microscope (SEM), thermogravimetric analysis (TGA), and differential scanning calorimeter (DSC) have been used to characterize the fiber microstructures and properties. / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2018
3

Étude expérimentale et modélisation d'un procédé de captage en CO2 en postcombustion par l'ammoniaque à l'aide de contacteurs membranaires : du matériau à l'évaluation de l'intensification de l'absorption / Experimental study and modeling of an ammonia based CO2 capture process using hollow fiber membrane contactors : from the material selection to the absorption intensification assessment

Makhloufi, Camel 06 December 2013 (has links)
L'absorption du CO2 à l'ammoniaque au sein d'une colonne garnie est une technologie prometteuse pour capter le CO2 en postcombustion. La fuite d'NH3 engendrée par la volatilité de ce solvant gêne néanmoins le déploiement de ce procédé. Dans cette étude, la faculté des contacteurs membranaires à permettre des performances d'absorption du CO2 intensifiées et des pertes en NH3 réduites par rapport au procédé conventionnel est évaluée. Pour cela, l'emploi de fibres composites innovantes constituées d'une peau dense assurant un transport sélectif du CO2 vis-à-vis de NH3 a été proposé. Compte tenu des propriétés de ces molécules, aucun matériau ne présentait jusqu'alors de sélectivité de séparation favorable au CO2. Des essais de temps-retards ont permis de révéler 6 matériaux fluorés présentant les propriétés de sélectivités inverses recherchées. Le Teflon AF2400, polymère hautement perméable au CO2, a été choisi pour constituer les fibres creuses composites employées lors d'expériences d'absorption. Leurs performances ont été comparées à celles de contacteurs commerciaux microporeux (Oxyphan) et composites (Oxyplus) pour différentes conditions opératoires. Alors qu'aucune expérience stable n'a pu être achevée avec les contacteurs microporeux du fait de la précipitation de sels d'ammonium, les contacteurs composites ont permis des performances de capture supérieures aux objectifs fixés. La modélisation 2D du transfert de matière a permis de révéler le rôle prépondérant du support microporeux dans les performances d'absorption observées. Enfin, une intensification élevée des performances d'absorption du CO2 et des pertes en NH3 fortement réduites par rapport au procédé conventionnel ont pu être démontrées / Aqueous ammonia as a solvent for post-combustion CO2 capture in a packed column is seen as a promising technology. Nevertheless, ammonia volatility is a considerable drawback for its large scale deployment. In this study, the ability of hollow fiber membrane contactors to significantly improve CO2 mass transfer performances while mitigating ammonia losses when compared to packed column is evaluated. In that purpose, the use of innovating composite fibers made of a thin dense layer selective for CO2 over NH3 is proposed. Up to now, a faster permeation of CO2 compared to NH3 in dense polymers was totally unexpected and to our knowledge unexplored. Time-lag experiments have revealed a series of 6 fluorinated structures showing the desired reverse selectivity properties. Teflon AF2400 has been selected as the dense skin of composite fibers used during absorption experiments. Their performances have been compared, for different operating conditions, to those given by commercial microporous (Oxyphan) and composite (Oxyplus) membrane contactors. Due to ammonium salt precipitation issues, no stable experiment has been achieved using microporous membrane contactors. At the opposite, absorption efficiencies higher than post-combustion capture standards have been reached using composite membrane contactors. 2D mass transfer modeling has revealed the controlling role of the microporous support in the observed absorption performances. Finally, high CO2 mass transfer intensification factor and drastically reduced ammonia losses have been shown
4

Fibres obtenues à partir de nanotubes de carbone verticalement alignés : élaboration et propriétés / Fibers obtained from vertically aligned carbon nanotube : development and properties

Debski, Nicolas 09 December 2014 (has links)
Les fibres à base de nanotubes de carbone (NTC), de par leurs propriétés électriques et mécaniques, sont des candidates potentielles pour des applications telles que les textiles fonctionnels ou les câbles conducteurs. A ce jour, deux familles de fibres, préparées selon des voies différentes, coexistent : les fibres contenant seulement des NTC et les fibres composites polymère/NTC. Les caractéristiques des NTC et les voies de mise en forme sont des facteurs reconnus pour impacter les propriétés électriques et mécaniques des fibres. Toutefois, compte tenu de la variabilité des sources de NTC et des conditions d’élaboration, il est difficile de dégager des relations entre caractéristiques des fibres et propriétés. C’est dans ce contexte que se situent ces travaux, avec comme objectifs la préparation de fibres à partir de NTC verticalement alignés selon deux voies d’élaboration et l’étude de leurs propriétés en fonction des caractéristiques des NTC. Une première partie de l’étude s’est focalisée sur la faisabilité de filage (voie sèche) à partir de tapis de NTC synthétisés par CCVD d’aérosol afin d’obtenir des fibres composée seulement de NTC. Même si l’ensemble des essais n’a pas abouti à un filage continu, ils ont permis de mettre en évidence un lien entre la faible tortuosité des NTC au sein du tapis et la capacité de ce dernier à former un réseau cotonneux qui semble être nécessaire à l’obtention d’une fibre. La seconde partie concerne l’étude de l’effet des caractéristiques des NTC (longueur, diamètre et structure) sur les propriétés électriques et mécaniques de fibres composites NTC/alcool polyvinylique (PVA) obtenues par voie humide à partir de suspensions de NTC. Or, la préparation de ces dernières engendre une rupture des NTC dont la longueur en suspension est limitée au micromètre. Un nouveau procédé de dispersion basé sur l’utilisation de cycles de gel/dégel a été développé, permettant d’aboutir à des longueurs de NTC en suspension de l’ordre de 4 à 6 µm. Ainsi, des suspensions concentrées en NTC de longueur, structure et diamètre différents ont été obtenues et ont permis d’élaborer avec succès des fibres composites. Les propriétés mécaniques des fibres brutes sont essentiellement modifiées par la longueur des NTC qui conduit à une amélioration du module de Young et de la contrainte à la rupture. Les propriétés électriques dépendent de la concentration en NTC dans la fibre et de la structure des NTC. Après traitement des fibres à 200 °C, l’augmentation de la longueur des NTC entraine une amélioration de la conductivité électrique. Par conséquent, l’utilisation de NTC longs dans des fibres composites s’avère bénéfique en termes d’augmentation des performances. / Carbon nanotube (CNT) based fibers, due to their interesting electrical and mechanical properties, exhibit a broad range of potential applications, such as functional textile or electrical wiring. To date, there are two families of fibers prepared according to different routes: pure CNT fibers and CNT composite fibers. The CNT characteristics and the elaboration process are known to impact their electrical and mechanical properties. However, the large diversity of manufactured CNT and spinning conditions used to elaborate these fibers are not favorable to establish clear relationship between fiber characteristics and their properties. In this context, the aim of the present work is to prepare fibers from vertically aligned CNT carpet according to two different elaboration process and to study their properties according to the CNT characteristics. A first part of this study was focused on the dry-spinning feasibility directly from CNT carpet synthesized by aerosol-assisted CCVD process in order to prepare fibers containing only of CNT. Even though all tests did not lead to a continuous spinning, a relation between the weak CNT tortuosity and the capacity of carpet to form fluffy network was established, which seems important for fiber continuous spinning. The second part is devoted to the study of the CNT characteristic effect (length, diameter and structure) on the electrical and mechanical properties of composite fibers obtained by wet spinning from CNT suspension. However, the preparation of these suspensions generates a CNT breakage by reducing their length to the micrometer range. A new dispersion process based on freezing/thawing cycles was developed and enables to keep CNT length in suspension of about 4 to 6 µm. Thus, concentrated suspensions with different CNT length, structure and diameter were obtained and successfully spun into fibers. The mechanical properties of raw fibers are essentially modified by CNT length which involves an improvement of the Young modulus and the tensile strength. The electrical properties depend on the CNT concentration in fiber and on the CNT structure. After a heat treatment of fiber at 200 °C, the increase of CNT length leads to an improvement of electrical conductivity. Consequently, the use of long CNT in composite fibers is beneficial to improve their performances.
5

Fabrication of polymeric composite nanofiber materials and their antibacterial activity for effective wound healing

More, Dikeledi Selinah January 2023 (has links)
D. Tech. (Department of Biotechnology and Chemistry, Faculty of Applied and Computer Sciences), Vaal University of Technology. / The synthesis of Ag and Cu nanoparticles was carried out using the thermal decomposition method in the presence of oleylamine as a capping agent. This method was used because it can produce uniform and monodisperse nanoparticles with controlled size distribution. The nanoparticles synthesized under various conditions were characterized by transmission electron microscopy (TEM), UV/Vis spectroscopy, photoluminescence spectroscopy (PL), and X-ray diffraction (XRD). The effect of precursor concentration on the morphology and size of the nanoparticles was investigated. It was observed that an increase in the precursor concentration resulted in an increase in particle sizes with different morphologies for both Ag and Cu nanoparticles. The increase in particle sizes for Ag nanoparticles was due to Ostwald ripening, while for Cu nanoparticles it was due to agglomeration, as Cu tends to oxidize in the atmosphere, leading to a change in particle size and shape. However, the ability to control and manipulate their physical and chemical properties depends on tuning their size and shape. Therefore, varying the precursor concentration helped in selecting the optimal concentration for this study. The nanoparticles produced were used in another study as fillers or additives for the production of nanofiber composites. The development of nanofibers by electrospinning process has led to potential applications in filtration, tissue engineering scaffolds, drug delivery, wound dressing and etc. The current study is an attempt to fabricate composite nanofibers that can be used as wound dressing material for effective wound healing. The approach involves the blending of two different polymers both being biocompatible and biodegradable were one is a natural polymer and the other is a synthetic polymer. In this study, different weight ratios of CS/PVA blends, Ag/Cu/CS/PVA, Ag/CS/PVA and Cu/CS/PVA composite fibers have been successfully prepared by the electrospinning process. The tip-to-collector distance was kept at 15 cm and the applied voltage was varied from 15 to 25 kV. The effects of the weight ratios applied voltage and the nanoparticles loading on the morphology and diameter of the fibers were investigated. The resultant fibers were characterized using scanning electron microscopy (SEM), XRD, Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric analysis (TGA) and UV-Vis spectroscopy. The SEM results showed that an increase the amount of chitosan in the CS/PVA blend resulted in a decrease in the fiber diameters while an increase in the voltage from 15 to 25 kV led to a decrease in the fiber diameters. Furthermore, an increase in fiber diameters was observed with irregular morphologies upon addition of Ag/Cu nanoparticles into the blend. The latter changes are perceived to be as a result of an increased conductivity and a higher charge density. The XRD results showed peaks which correspond to Ag in the face centred cubic. Ag peaks are more dominant than Cu peaks in the XRD of the mixed nanoparticles. The FTIR spectra of the Ag/Cu/CS/PVA composite fibers gave almost identical features as the blend. This proves that there was an interaction between CS and PVA polymer due to intermolecular hydrogen bonding. The TGA curves showed no significant effect on the thermal stability of the composite fibers upon addition of different nanoparticles loadings. The absorption spectra of the composite fibers showed an improved optical properties compared to the blend. For Ag and Cu nanoparticles composite fibers it was observed that addition of Ag nanoparticles in the blend resulted in an increase in fiber diameters with uniform morphology whereas for Cu resulted in a decrease in fiber diameters. Both Ag and Cu composite fibers showed an improved optical properties. The effect of CS/PVA, Ag/Cu, Ag, and Cu nanofibers on the selected microorganism (K.pneumoniae, S. aureus, P. aeruginosa, and E.coli) was evaluated using the disk diffusion method. It was observed that Ag/Cu/CS/PVA composite fibers showed greater activity against all microorganisms compared to Ag and Cu composite fibers. The alamar blue and Pierce Lactase dehydrogenase (LDH) assay were used to assess the effect of the blend and the composite fibers on cell viability and cytotoxicity, respectively. The results show that the prepared blend and the composite fibers did not have any toxic effect on human adipose derived stem cells (hADSC). The results also showed that as the concentration of Ag/Cu nanoparticles was increased the viability of the cells also increased after 24 hour incubation. More proliferation was observed in day 1 compared to day 3. The 30/70 blend showed more viable cell compared to the negative control. For Ag and Cu composite fibers the 30/70 CS/PVA blend increased cell proliferation after 3 days with 17% more viable cells compared to the negative control. These results show that the prepared blend with its composite fibers are biocompatible with human (ADSC) and may be suitable for use in biomedical application such as wound dressing.

Page generated in 0.3047 seconds