• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 696
  • 194
  • 151
  • 98
  • 27
  • 17
  • 15
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 9
  • 8
  • Tagged with
  • 1616
  • 1616
  • 291
  • 206
  • 186
  • 180
  • 175
  • 138
  • 135
  • 132
  • 125
  • 122
  • 120
  • 119
  • 117
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1101

Wax distribution quantification using digital image analysis techniques

Saunders, Heath G. 10 November 2009 (has links)
A wax distribution quantification procedure using digital image analysis and fluorescence microscopy techniques was developed. The procedure was evaluated by investigating the effect that variable application rates have on wax distribution. The effect of emulsion type and application on |B strength, thickness swell, water absorption, and linear expansion of flakeboard panels were also investigated. Tests revealed that increasing the wax emulsion flow rate and application pressure had a significant affect on wax coverage. A lower amount of flake surface area was covered when the flow rate and air pressure was increased. It was also found that the presence of resin on the flakes affected wax coverage. Resin presence generally increased the wax coverage variability. The application flow rate and pressure also seemed to affect the interaction present between the resin and wax spots. The fractional coverage area of spot size classes was also significantly affected by the emulsion's application parameters. Increasing the flow rate and air pressure was shown to create more variable wax spot distributions. The presence of resin spots on the flakes was also shown to significantly affect the spot size distribution. Changes in the emulsion flow rate and application air pressure also appeared to have a significant affect on wax spot distribution. The type of wax emulsion used, as well as increased application flow rate and pressure, was shown to significantly affect both 2 hour and 24 hour water absorption (by weight). It was found that using a soap based emulsion improved the water absorption characteristics, and that increasing the emulsion's application flow rate and air pressure adversely affected the water absorption. Differences in IB strength and 24 hour thickness swell were also seen between the panels made using increased flow rate and pressure and the panels produced with standard parameters. However, due to possible influence of press malfunctions on the boards performance, conclusions about the effect of increased parameters can not be clearly drawn. No significant difference in linear expansion was seen for any of the samples tested. / Master of Science
1102

Tribological behavior of unfilled and carbon fiber reinforced polyether ether ketone/polyether imide composites

Yoo, Jong Hyun 30 December 2008 (has links)
The friction and wear of injection molded Poly(ether ether ketone) (PEEK) and Poly(ether imide) (PEI), PEEK/PEI blends with the weight compositions of 50/50 %, 70/30 %, and 85/15 %, with and without short carbon fibers were measured in a pin(52100 steel ball)-on-disk(polymer blend) configuration under dry friction. 50/50, 70/30, and 85/15 compositions were annealed to study the effect of crystallinity on wear test. The test variables were sliding speed and normal load. The wear mechanism of pure PEEK matrix was plowing and as the weight percentage of PEI in the blend was increased the wear mechanism changed to the generation of small particles. The wear rates of the unfilled PEEK/PEI blends were found to be a function of not only the blend composition, but also of the normal load, sliding speed and crystallinity in complex manner. However, the coefficient of friction of the unfilled blends did not seem to significantly depend on those testing parameters. When no wear debris was produced, it was below 0.15 otherwise it was ranged from 0.2 to 0.3. The 30 weight % carbon fiber reinforced (CFR) PEEK did produced wear particles but 70/30 and 100 % PEI composites showed reduced wear rates compared to those of unfilled blends. The coefficients of friction of CFR did not seem to be changed from those of the untreated blends except for 100% PEI. Presence of the incubation time before wear particles were produced indicated that the predominant wear mechanism was fatigue. An increase in friction correlated with the generation of wear particles and the formation of a wear groove. / Master of Science
1103

Nonlinear static and transient analysis of generally laminated beams

Obst, Andreas W. 10 October 2009 (has links)
In this study two one-dimensional finite element formulations based on higher-order displacement models have been developed. Both theories account for geometric nonlinearities, a parabolic shear strain distribution through the thickness, and satisfy the shear stress free boundary conditions at the upper and lower surfaces of the beam. The theories also account for the bend-stretch, shear-stretch, and bend-twist couplings inherent to generally laminated composite beams. Further, a coupling between the shear deformation and the twisting is introduced. The lateral strains are assumed nonzero and retained in the formulation. The first model termed SVHSDT also accounts for the continuity of the interlaminar shear stresses at the layer interfaces, while keeping the number of degrees of freedom independent of the number of layers. This theory though is restricted to the analysis of symmetrically laminated cross-ply beams. The formulation has been applied to the linear static and free vibration analysis. The second model termed RHSDT is valid for generally laminated beams. This model has been applied to the nonlinear static and transient analysis of generally laminated beams, free vibration analysis, and impact analysis. The effect of axial stresses on the nonlinear transient response has also been investigated using this theory. For generally laminated beams the lateral strains and the shear-twist coupling were found to have a significant effect on the vibrations frequencies. Also, as expected, initial stresses, boundary conditions and the lamination scheme were found to have a significant effect on the nonlinear responses. / Master of Science
1104

Static and dynamic large deflection flexural response of graphite- epoxy beams

Sensmeier, Mark D. (Mark David) 20 November 2012 (has links)
In support of crashworthiness studies of composite airframes, the present study was undertaken to understand the large deflection flexural response and failure of graphite-epoxy laminated beams. The beam specimens were subjected to eccentric axial impact loads and to static eccentric axial loads, in order to assess the damage caused by impact. A geometrically and materially nonlinear analysis of the response and failure of the static test specimens is presented. The analysis employed an incremental, noniterative finite element model based on the Kantrovich method and a corotational solution technique. Width-wise effects are included by assuming specific forms of the displacements across the width, with length-wise variation introduced as a degree of freedom. This one-dimensional, 22 degree of freedom finite element accurately predicted the load-deflection and strain-deflection responses of the static test specimens. Inclusion of nonlinear material behavior was found to be important in correctly predicting load-deflection response of uniaxial materials, while inclusion of width-wise effects was determined to be more important for laminates with off-axis plies due to the existence of coupling between bending and twisting curvatures (D<sub>16</sub>and D<sub>26</sub>). Once material nonlinearity begins to occur in flexure, even symmetric laminates exhibit bending-stretching coupling due to different material response in tension and compression. / Master of Science
1105

Nonlinear analysis for the response and failure of compression- loaded angle-ply laminates with a hole

Mathison, Steve Richard 17 November 2012 (has links)
The objective of this study was to determine the effect of nonlinear material behavior on the response and failure of unnotched and notched angle-ply laminates under uniaxial compressive loading. The endochronic theory was chosen as the constitutive theory to model the AS4/3502 graphite-epoxy material system. Three-dimensional finite element analysis incorporating the endochronic theory was used to determine the stresses and strains in the laminates. An incremental/iterative initial strain algorithm was used in the finite element program. To increase computational efficiency, a 180° rotational symmetry relationship was utilized and the finite element program was vectorized to run on a super computer. Laminate response was compared to experiment revealing excellent agreement for both the unnotched and notched angle-ply laminates. Predicted stresses in the region of the hole were examined and are presented, comparing linear elastic analysis to the inelastic endochronic theory analysis. A failure analysis of the unnotched and notched laminates was performed using the quadratic tensor polynomial. Predicted fracture loads compared well with experiment for the unnotched laminates, but were very conservative in comparison with experiments for the notched laminates. / Master of Science
1106

Global-local finite element analysis of laminated composites

Vidussoni, Marco A. 21 November 2012 (has links)
A Global-Local finite element approach was used to investigate the interlaminar stresses in laminated composite plates with a central circular hole. Detailed solutions were sought for the interlaminar normal stress distributions close to the free straight edge of the plate as well as around the edge of the hole. The Global model was analyzed as a two-dimensional problem. The displacements obtained a distance away from the regions of interest in the two-dimensional model were used as imposed boundary conditions to the three-dimensional models of the edges. The results obtained were found to be accurate, thus demonstrating the validity and strength of the Global-Local technique. The results further concluded that for symmetric cross-ply laminated plates with large central circular holes, the interlaminar normal stresses at the free edges are affected to a small degree by the size of the hole. The CSM Testbed and ANISAP were the two finite element analysis programs used throughout this investigation. The CSM Testbed element library was augmented with 16, 20, 24 and 32 node displacement formulation based elements which were implemented as Experimental elements. / Master of Science
1107

Development and verification of a resin film infusion/resin transfer molding simulation model for fabrication of advanced textile composites

MacRae, John Douglas 09 May 2009 (has links)
The objective of this study was to develop a two-dimensional computer model for the simulation of the resin transfer molding/resin film infusion processing of advanced composite materials. This computer simulation model is designed to provide aircraft structure and tool designers with a method of predicting the infiltration and curing behavior of a composite material component. For a given specified cure cycle, the computer model can be used to calculate the resin infiltration, resin viscosity, resin advancement, heat transfer within the component/tool assembly during processing and preform compaction. Formulations of the resin flow problem are given using the finite element/control volume technique based on Darcy's Law of flow through porous media. This technique allows for the efficient numerical calculation of the advancing resin front within the preform materials. The heat transfer in the fabric preform and tooling is analyzed using a transient finite element method which included the effects of convection on the tooling surfaces. Compaction behavior of the tooling assembly is analyzed using a simplified isotropic form of the plane elasticity equations. All of these solutions were coupled together in a quasisteady state non-linear fashion inside the computer code. / Master of Science
1108

Transmitted light intensity as a nondestructive evaluation technique for glass/epoxy composite laminates

Carter, Robert Hansbrough 24 November 2009 (has links)
Selection of a nondestructive evaluation method for inspection of composite materials is a difficult process due to their multilithic nature and complex failure. Development of new techniques, which are more cost-effective and practical, are needed. Transmitted light intensity has the potential to satisfy these criteria. By measuring light intensity transmitted through a composite sample during fatigue testing, changes in the intensity were correlated to damage development within the sample. By applying image enhancement and analysis techniques, damage development due to matrix cracking and delamination, was detected and presented in images that were easy to understand. / Master of Science
1109

A twenty DOF element for nonlinear analysis of unsymmetrically laminated beams

Raciti, Stefano 01 August 2012 (has links)
The purpose of this study was to develop a simple one- dimensional finite element for the nonlinear analysis of symmetrically and unsymmetrically laminated composite beams including shear deformation. There is a need for a simple and efficient method for analyzing unsymmetrically laminated beams since no other study on this topic is currently available. The beam element has ten degrees of p freedom at each of the two nodes: the axial displacement, the transverse deflection due to bending and shear, the twisting angle, the inplane shear rotation, and their derivatives along the axial direction. The formulation, solution procedure, and the computer program have been evaluated by solving a series of examples on the static response, free vibration, buckling, and nonlinear vibrations of isotropic and laminated beams. For unsymmetrically laminated beams, the nonlinear vibrations were found to have a soft spring behavior for certain boundary conditions as opposed to a hard spring behavior observed in isotropic and symmetrically laminated beams. The inplane boundary conditions were found to have a significant effect on nonlinear responses. / Master of Science
1110

Micromechanics-based approach to predict strength and stiffness of composite materials

Caliskan, Ari Garo 05 September 2009 (has links)
One of the key issues concerning the durability of composites is the strength and stiffness degradation during service. Traditionally, these materials have been analyzed by methods which do not take into account variations in the material at the fiber/matrix level. In addition, manufacturing techniques have advanced enough so that composites can be designed from the fiber/matrix level up. As a result, it is important to predict the effect microlevel variations in the material have on macroscopic behavior. Therefore, it is vital to use a micromechanics model to calculate stress and displacement variations. In this study, the strength and stiffness of polymer matrix composites will be determined. To accomplish this, a variational model which calculates microstresses and strains due to damage is used in conjunction with a statistical strength model to predict strength. The results are compared to experimental results of uniaxial strength of carbon fiber composites. In addition, the stiffness of a continuous fiber composite was predicted and compared to a rule of mixtures equation of stiffness. A comparison showed very good agreement. To study the effect of damage, the stiffness of a continuous fiber composite with fiber fragmentation is predicted as a function of fragmentation length and fiber volume fraction. Finally the stiffness of a short-fiber composite is predicted and compared to analytical and experimental results. / Master of Science

Page generated in 0.2043 seconds