• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 695
  • 194
  • 151
  • 98
  • 27
  • 17
  • 15
  • 10
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • 8
  • Tagged with
  • 1613
  • 1613
  • 290
  • 206
  • 186
  • 180
  • 175
  • 138
  • 135
  • 132
  • 124
  • 122
  • 119
  • 119
  • 117
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1131

Design and development of an automated temperature controller for curing ovens

Schoeman, Ruaan Mornè 12 1900 (has links)
Thesis (M. Tech. - Engineering: Electrical, Department Electronic Engineering, Faculty of Engineering and Technology)--Vaal University of Technology. / Curing of materials in order to obtain different properties has been a practice for many years. New developments in composite materials increase the need to control certain variables during the curing process. One very significant variable is temperature. Temperature control by itself is an old practice, however when the need for repeatedly controlling the process accurately over long periods of time arises, a system is required that outperforms normal manual control. One of the aspects within such a system that needs to be considered is the ability to replicate the temperatures within an oven which were originally used for a specific material’s curing profile. This means that a curing profile would need to be defined, saved for later and finally be interpreted correctly by the controlling system. Different control methods were simulated to enable the system to control the temperature which has been defined by literature. This dissertation introduces a variation on the standard control methods and shows improved results. Switching the oven on and off in order to increase or decrease internal oven temperature seems simple, but can cause switching devices to decrease their operational life span, if not designed carefully. A combination switch was introduced which harnesses the advantages of two very common switching devices to form an improved combination switch. Software for the personal computer environment, as well as software for the embedded environment were developed and formed a control system that produced acceptable results for temperature control. Accuracies of 98% and more were achieved and found to be acceptable according to standard engineering control practices. An accurate temperature profile controller was designed, simulated and built in order to control the temperature inside a specific curing oven which, in turn, determined the curing properties of specific materials. The overall results were satisfactory which lead to achieving the objectives outlined in this dissertation.
1132

Flame Spread on Composite Materials for use in High Speed Craft

Wright, Mark T. 05 November 1999 (has links)
"The use of advanced materials in the construction of high-speed craft is becoming more commonplace. However, there are certain requirements set in the High Speed Craft Code (published by IMO) that restrict the use of materials based on results from full scale room fire testing (ISO 9705). An obvious benefit would be gained by simulating the results of these full-scale tests using bench scale data from the Cone Calorimeter and LIFT apparatus. A flame-spread algorithm developed by Henri Mitler at the National Institute of Standards and Technology was selected for implementation into the zone fire model CFAST. This algorithm was modified from its original form, so that it could simulate flame spread on wall/ceiling lining materials for both sidewall and corner scenarios, including ISO 9705 as prescribed in the High Speed Craft Code. Changes to the algorithm included geometry of flame spread across the ceiling, flame height, radiation exchange, ignition burner heat flux maps, and multiple pyrolysis zones. The new flame spread algorithm was evaluated against room corner test data from four different marine composite materials tested per ISO 9705."
1133

Strength Prediction And Fatigue De-Bond Growth In Bonded Joints In Metallic And Composite Structures

Sahoo, Pradeep Kumar 07 1900 (has links) (PDF)
Large scale structures such as those in aerospace flight vehicles are made in parts and assembled. Joints are inevitable in these systems and they are potential threats to the structural integrity of the flight vehicles. Fastener and bonded joints are the most commonly used methods of joining in these structures. Among these, adhesive bonding has become more popular with the advent of composite structures, due to the presence of less number of points of stress concentration and the resulting benefit for static strength and fatigue life. In modern aircraft in which maximum percentage of composite materials are being employed due to several benefits, designers are contemplating to replace discrete joints with adhesively bonded joints wherever possible. A detailed literature survey shows that the field of adhesively bonded joints has been extensively studied in the past. Initial publications appeared in late 1950’s and early 1960's, but many of the initial attempts were based on one dimensional (1-D) approximation of the adherents due to lack of computing power. With the current day emphasis on safety and damage tolerance, there is a definite need to study these joints with 2-D and 3-D idealization. In spite of valuable contributions in the literature from several researchers in past 4-5 decades, one finds that there are gaps to be filled, in particular, with reference to static strength prediction and de-bond growth to failure under fatigue loading. This thesis is intended as a modest contribution in this direction covering the methods of strength prediction and also correlations between de-bond growth and fracture parameters. Most commonly used bonded joints are single lap joints. The primary issue in their analysis is the geometric nonlinearity resulting in large deformations due to eccentricity of load path between the adherents. Further, adhesives have very low yield strength and plastic deformation in thin adhesives could affect the mechanics of load transfer. The current work is initiated by carrying out geometric and material nonlinear analysis of adhesively bonded single lap joints between metal-metal (aluminum-aluminum) adherents using standard NASTRAN finite element software. Modified Newton-Raphson iterative technique has been used to economize the computer time and also achieve fast convergence. A convergence study has been conducted to determine the order of mesh size required. Preliminary results are obtained on configurations analysed by earlier workers and the current results are compared with their results. Later, extensive experimental and numerical studies have been taken up on the numerical strength prediction of these joints correlating them to the experimental values. Cohesive failure along the centre line of the adhesive is assumed under both static and fatigue loading. The bonded joints are studied with both 2-D plane stress and plane strain nonlinear FE analysis. The issue in this type of analysis is the presence of theoretical elastic singularity at the ends of the lap length. The normally used maximum stress criterion can not be used in such circumstances. There were attempts in the past to use point stress or average stress criteria for this purpose. In point stress criterion the shear stress (or von-Mises stress) is picked at a characteristic distance away from the ends of the lap length and compared with the corresponding strength value to predict failure. In the average stress criterion the stresses are averaged over a characteristic distance from the ends of lap length and this is compared with the corresponding strength to predict failure. Determination of the characteristic distance in both the cases needs extensive experimental results on static strength of joints. The static strength data is to be correlated with numerical results to determine the characteristic distance in various specimens. In the current thesis a series of specimens with aluminum-aluminum, aluminum-CFRP composite and CFRP-CFRP composite adherents were tested to determine the static strength. In all the specimens the adhesive used was Redux 319 A. These experimental strength data was used to determine characteristic distance using point stress criterion. The consistency of estimates of the characteristic distances in all the specimens shows that the approach is capable of predicting the static strength. The above approaches are capable of predicting the strength of joints with linear material and nonlinear geometric analysis. But when the adhesive yield strength is low, a novel approach is required to predict the static strength. Numerical analysis is conducted using a combined material and geometric nonlinear analysis in NASTRAN software. The plastic zone size from the ends of the lap length is determined at different load levels. Combining the numerical results with experimental failure load data, a failure criterion based on plastic zone size (PZS) is proposed in this thesis and validated. It has been observed that the validation is with limited testing carried out and further experimental programs are required to complete the validation. To the best of the knowledge of the author PZS criterion is used for the first time for failure prediction of bonded joints. The structural integrity of the joints also requires a study of de-bond growth and damage tolerance assurances in the presence of de-bond type of defects. The first step in this direction is to estimate the fracture parameters at the tips of de-bond in the adhesive of lap joints between various adherents. Modified virtual crack closure integral (MVCCI) technique has been developed in the past for estimating Strain Energy Release Rates (SERR) in several crack problems. Large contributions for developing this technique have come from the group where the author has worked. This technique is simple and has the ability to estimate individual SERR components GI and GII in cases of mixed mode fracture. It is seen clearly that the de-bond growth in bonded joint is one of mixed mode. The mode-II component is because of shear stresses transferring the load across the adherents and mode-I component is due to peel stresses developed during the deformation. The mode I SERR component is primarily responsible for de-bond growth and the effect of mode II component on de-bond growth is insignificant. The mesh details for accurately estimating the SERR components are evaluated and those meshes are used to estimate these values for the cases of aluminum-aluminum, aluminum-CFRP composite and composite-composite joints. Obviously, when the adherents are dissimilar, mode I SERR components are the highest and assist faster de-bond growth. Painstaking fatigue de-bond growth experiments were conducted and de-bond growth rate with number of cycles of fatigue loading was determined. MVCCI method is used to estimate SERR components at maximum load and zero load in the fatigue cycle, to determine the SERR range in the fatigue cycle. Since the stress ratio, R of the loading cycle is -1, the minimum load for estimating SERR components is taken as zero. From the experimental data and numerical estimates, a Paris type of equation was developed for the de-bond growth. The thesis concludes with a summary of the achievements in the current work with respect to the structural integrity of adhesively bonded joints and also with suggestions for future work.
1134

Structural acoustic optimization of a composite cylindrical shell

Johnson, Wayne Michael 07 June 2004 (has links)
No description available.
1135

On The Effect Of Material Uncertainty And Matrix Cracks On Smart Composite Plate

Umesh, K 07 1900 (has links) (PDF)
Recent developments show the applications of smart structure in different engineering fields. Smart structures can be used for shape and vibration control, structural health monitoring etc. Smart materials can be integrated to composite structure to enhance its abilities. Fiber reinforced composites are the advanced materials of choice in aerospace applications due to its high strength and stiffness, light weight and ability to tailor according to the design requirements. Due to complex manufacturing process and varying operating conditions, composites are susceptible to variation in material properties and damages. The present study focuses on the effect of uncertainties in material properties and damages on a smart composite structure. A cantilevered composite plate with surface mounted piezoelectric sensor/ actuator is considered in this study. The sensors and the actuators are connected through a conventional feedback controller and the controller is configured for vibration control application. Matrix cracks are considered as damage in the composite plate. To study the effect of material uncertainty, probabilistic analysis is performed considering composite material properties and piezoelectric coefficients as independent Gaussian random variables. Numerical results show that there is substantial change in dynamic response of the smart composite plate due to material uncertainties and damage. Deviation due to material uncertainty and damage can be compensated by actively tuning the feedback control system. Feedback control parameters can be properly adjusted to match the baseline response. Here baseline case represents the response of the undamaged smart composite plate with deterministic material properties. The change in feedback control parameters are identified as damage indicator. Feedback control based damage detection method is proposed for structural health monitoring in smart composite structure and robustness of the method is studied considering material uncertainties. Fractal dimension based damage detection method is proposed to detect localized matrix cracks in a composite plate with spatially varying material properties. Variation in material properties follows a two dimensional homogeneous Gaussian random field. Fractal dimension is used to extract the damage information from the static response of composite plate with localized matrix cracks. It is found that fractal dimension based approach is capable of detecting the location of the single and multiple damages from the static deflection curve. Robustness of the fractal dimension based damage detection method is studied considering spatial uncertainties in material properties.
1136

Konstrukční návrh extruderu pro 3D tisk kompozitních součástí / Design of the extruder for 3D printing the composite parts

Šmalec, Petr January 2017 (has links)
The diploma thesis is focused on 3D printing of composites parts. Thesis deals with methods of additive manufacturing and describes principle of selected 3D printing technologies. In addition to additive technologies, the theoretical part presents an overview of composite materials and methods of composite production. Then there are four concepts that lead to 3D printing of continuous fiber reinforced composites components. The final concept is selected according to multi-criteria analysis and then designed. Designed extruder allows 3D printing of composite materials. The principle of the function consists of fiber impregnation by matrix inside the heat chamber and then deposition of composite on printing platform. The extruder also consist of fiber cutting mechanism. The extruder's ability is verified by the experiment.
1137

Synthesis and characterization of a biocomposite derived from banana plants (Musa cavendish)

Paul, Vimla January 2015 (has links)
Submitted in fulfillment of the requirements of the degree of Doctor of Philosophy in Chemistry, Durban University of Technology. Durban, South Africa, 2015. / Over decades synthetic composites have become an indispensable part of our lives with their various applications such as packaging, sporting equipment, agriculture, consumer products, medical applications, building materials, automotive industry, and aerospace materials among others. Although these polymers have the desired properties for the above applications, they are invariably costly. Furthermore, they cannot be easily disposed of at the end of their useful lives and simply pile up and cause significant damage to the environment. However, the dwindling supply of fossil fuel, increased oil prices, together with the growing public concern of greenhouse gas emissions and global warming, has forced scientists to search for new development of sustainable materials from renewable resources. Hence in recent years, there is an increased interest in biocomposite manufacturing with natural resources as environmental issues are addressed. The research work presented in this dissertation is to the best of the author’s knowledge a world-first overall investigation pertaining to the concept of synthesizing a banana sap based bio-resin (BSM) reinforced with banana fibres. In this work the chemical composition of banana sap was determined to investigate the chemical reactions taking place in the resin formulation. BSM was synthesized, characterized and proposed as a potential bio-resin to be used in the biocomposite manufacture for non-functional motor vehicle components. BSM, a hybrid bio-resin was synthesized with equimolar quantities of maleic anhydride and propylene glycol and 50% banana sap. A control resin without the banana sap was also synthesized for comparison purposes. It was proposed that the presence of sugars, esters and pthalates from the sap, determined by HPLC and GC-MS, contributed to the cross-linking of the polymer chain. The acid value and viscosity of BSM were determined and found to be within specification of an industry resin. The molecular weights of the BSM and control resins were 2179 and 2114 units respectively. These were within the required molecular weight of unsaturated polyester resins. The gel and cures times of the BSM were 60% lower than the control resin suggesting that the banana sap behaved as an accelerator for the curing process. The lower cure time meant that using the banana sap in the formulation was cost effective and time saving. The thermal properties of BSM showed improved degradation temperatures and degree of crystallinity compared to the control resin. A parametric study showed that increasing banana sap concentration in the resin formulation led to increased tensile and flexural properties with 50% being the optimum amount of sap to be added to the formulation. The synthesized bio-resin and control resin were applied to biocomposites and characterized in terms of physical, thermal, mechanical, morphological, chemical and biodegradable properties. Mechanical tests indicated a 15 % increase in tensile strength, 12 % improvement in tensile modulus and a 25 % improvement in the flexural modulus, when compared to structures produced without banana sap. Natural fibres present the challenge of poor adhesion to the matrix. Chemical treatment of the banana fibre was done to improve on the compatibility of resin to fibre. Fibre pull-out showed that treated fibres had a better bond than the untreated fibre. Parametric studies were also done to evaluate the effect of fortifying the BSM resin with nanoclay. A 5% clay loading resulted in a 24% increase in tensile strength and 28% increase in flexural properties. Finally biodegradation studies of the BSM bio-resin, BSM biocomposite, control resin and control composite were investigated and compared to a positive reference, cellulose. Results showed that over a period of 55 days the BSM biocomposite showed 17.6% biodegradation compared to 8% with the control composite. No difference in biodegradation between the BSM bio-resin and the control resin was recorded. BSM biocomposite was proposed as a potential replacement to synthetic composites that contribute to the environmental landfill problems. The main contribution of this research is the use of the reinforcement and matrix from the same natural source. An enriched understanding of the synthesis, characterization and performance of the banana sap based bio-resin and biocomposite for the use of non-functional motor vehicle components is the key outcome of this investigation.
1138

Increasing the use of fibre-reinforced composites in the Sasol group of companies : a case study

Mouton, Jacques January 2007 (has links)
Thesis (D.Tech.: Mechanical Engineering)-Dept. of Mechanical Engineering, Durban University of Technology, 2007 xxx, 190 leaves, Annexures A-D / A composite material comprises two or more materials with properties that are superior to those of the individual constituents. Composites have become important engineering materials, especially in the fields of chemical plant, automotive, aerospace and marine engineering. The development of more advanced materials and manufacturing techniques in composites has grown from humble beginnings in the 1930s to a recognized and well-respected engineering discipline, providing solutions to conventional and challenging applications. At present, fibre-reinforced composites (FRCs) are amongst the most common types of composites used. They are produced in various forms with different structural properties, and designers, specifiers and end-users can choose from an almost endless list of these materials, providing design flexibility as well as low manufacturing and maintenance cost. Many suggest that composites have revolutionised the chemical and petro-chemical industries. Examples of applications include tanks and chemical reactor vessels that contains many hundreds of litres of hazardous chemicals, reinforced pipes measuring up to several meters in diameter conveying dangerous gases and so on. The South Africa Coal, Oil and Gas Corporation Limited (SASOL) was established in September 1950. From a small start-up, the company has grown to be a world leader in the commercial production of liquid fuels and chemicals from coal and crude oil. Sasol manufactures more than 200 fuel and chemical products at its main plants in Sasolburg and Secunda in South Africa as well as at several other plants abroad. Its products are exported to more than 90 countries around the world. The use of composites in general, and fibre reinforced composites in particular has received little support in Sasol through the years. Some sporadic use of these materials in the construction of process equipment, e.g. tanks, vessels and piping has taken place with varying degrees of success. While the use of equipment fabricated with fibre-reinforced composites has proven extremely successful in the chlorine producing facility in Sasolburg, catastrophic failures have taken place in Secunda in critical fire water systems made of these materials. The history of correct use and application of fibre-reinforced equipment has shown that the cost of ownership of such equipment is significantly lower than similar metallic equipment, therefore reducing costs and safety risks. However, even though this technology brings a company like Sasol closer to the realisation of the vast number of advantages and solutions offered by these materials, the reality is that most engineering personnel are still applying traditional (viz. steel and wood) technology as used by our predecessors. The work presented here attempts to indicate the relevance of fibre-reinforced composites for Sasol, and to detail efforts aimed at the raising of awareness amongst appropriate personnel at Sasol to increase the use of these materials in major capital projects and day-to-day maintenance contracts, therefore taking advantage of the superior performance of fibre-reinforced composites in demanding applications. In support of this drive, part of the work presented indicates the status as well as progress of the composites industry in the last few years. This project was therefore aimed at identifying the level of utilization of fibre-reinforced composites at Sasol, and the possible improvement in benefits of using these technologies. A methodology was developed, using engineering as well as marketing principles, to reach the engineering personnel in various divisions and seniority levels of Sasol to increase the awareness of the capabilities of composites materials, specifically regarding fibre-reinforced composites. Questionnaires were used to gauge the level of awareness while various methods, e.g. one-on-one meetings, seminars, conferences, electronic media, etc were used to upgrade the target groups’ knowledge. The results of the initial survey to determine the status of various dimensions in the company are indicated as well as the outcomes at the end of the research period. In support of the process in Sasol, the development, interaction and cross-pollination of international and national role-players in the fibre-reinforcement industry with respect to chemical containment and Sasol are indicated. The importance of this two-legged process is demonstrated: it ensures a professional national support framework for companies like Sasol. Results are indicated, compared and discussed to give future direction in this ongoing process. As important to this process was the development of appropriate technical resources (like design standards and codes) to enable their use within the group. It was recognised early on that raising the level of awareness of the target groups was not enough and that these resources had to be in-place down the line so that those who chose to could start to implement these material technologies with the aid of the resources. The development of the necessary resources is also discussed. Finally, it will be shown that significant growth has taken place regarding the awareness within the group over the course of implementation of this project. Specifically, about 20% of the target groups have moved from a stage of no knowledge to higher levels of confidence. In terms of use of these materials, significant growth has also taken place judging by the number of plant requests, activity on major capital projects and so on. In fact, from almost nothing in 1999, over the last 5 years in excess of R137 Million has been spent on capital equipment manufactured from composite materials, with the majority in the last 2 years.
1139

Impact response of a continuous fibre reinforced thermoplastic from a soft bodied projectile

Van der Westhuizen, Artho Otto 03 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2013. / AFRIKAANSE OPSOMMING: Saamgestelde materiale het baie gewilde materiale in die lugvaart- en motor industrië geword as gevolg van die gewigsbesparende voordele wat dit inhou. Kostes en ander verwerkingsprobleme het tradisioneel die wydverspreide gebruik van spesifiek termoplasties-versterkte vesels in hierdie areas verhinder. Baie van die vervaardigingsprobleme (spesifiek lang siklusse) is aangespreek met die aanvang van termoplastiese matriks materiaal soos Polyphenolien Sulfied (PPS). Hierdie materiaal voldoen ook aan die lugvaart-industrie se brand-, rook- en giftigheidstandaarde. Termoplastiese saamgestelde materiale kan byvoorbeeld gevind word op komponente in vliegtuie se binneruimtes en ook die voorste rand van die vlerke. Hierdie komponente is hoogs vatbaar vir impakskade. Die hoë sterkte en styfheid tot gewig verhoudings van saamgestelde materiale laat toe vir dun materiaal dwarssnitte. Komponente is dus kwesbaar vir uit-vlakkige impak beladings. Saamgestelde materiale kan ook intern deur hierdie beladings beskadig word en kan nie met die blote oog waargeneem kan word nie. Dit is dus nodig om die skade weens hierdie beladings tydens normale gebruik akkuraat te voorspel. Verder sal dit nuttig wees om die struktuur se gedrag te bepaal in toepassings waar byvoorbeeld passasier veiligheid krities is, soos op vliegtuig ruglenings tydens noodlandings. In hierdie studie is die potensiële vervaardigingsvoordele van termoplastiese saamgestelde materiale gedemonstreer. Daarbenewens is 'n uit-vlakkige impak deur 'n sagte liggaam herbou in 'n laboratorium omgewing. Die primêre doelwit van hierdie studie was om die impak numeries te modelleer. Vervaardigingsvoordele van `n vesel versterkte termoplastiese laminaat is gedemonstreer deur die vervaardiging van 'n konkawe, agt laag laminaat uit 'n vooraf gekonsolideerde geweefde doek. Die totale verwerkingstyd van die plat laminaat na 'n konkawe laminaat was minder as vyf minute. 'n Eenvoudige plat laminaat en 'n konkawe laminaat is onderwerp aan 'n lae snelheid impak deur 'n sagte projektiel. Die impak is gemodelleer deur die evaluering van drie modelleringsmetodes vir die saamgestelde paneel. Die evalueringskriteria het o.a. ingesluit of laminaat se volle gedrag suksesvol gemodelleer kon word met behulp van slegs 2D dop elemente. Die reaksie van die saamgestelde paneel en gepaardgaande faling is met wisselende vlakke van sukses deur die drie geëvalueerde modelle voorspel. Die faling van tussen-laminêre bindings (verwys na as delaminasie) kon nie deur enige van die modelle voorspel word nie. Twee van die modelle het egter in-vlak faling met redelike akkuraatheid voorspel. / ENGLISH ABSTRACT: Due to weight saving advantages composite materials have become a highly popular material in the aerospace and automotive industries. Traditionally processing difficulties and costs have been a barrier to widespread composite material use in these industries. With the advent of thermoplastic matrix materials such as Polyphenoline Sulphide (PPS) the processing difficulties (especially long cycle times) experienced with traditional thermosetting resins can be addressed while maintaining aerospace Fire-Smoke and Toxicity (FST) approval. Thermoplastic composites can for example be found on aircraft interior components and leading edges of the wings. These areas are highly susceptible to impact damage. The high strength- and stiffness to weight ratios of composites allows for thin material cross sections. This leaves the components vulnerable to out-of-plane impact loads. Composite materials may also be damaged internally by these loads, leaving the damage undetectable through visual inspections. It may therefore be necessary to predict the amount of damage a component would sustain during normal operation. Additionally, it would be useful to predict structural response of these materials in applications where passenger safety is crucial, such as aircraft seat backrests during emergency landings. In this study the potential processing benefits of thermoplastic composite materials were demonstrated. Additionally an out-of-plane impact from a soft bodied projectile was reconstructed in a laboratory environment. The primary objective was to numerically model the impact event. Processing benefits of thermoplastics were demonstrated by producing a single curvature eight layered laminate from a pre-consolidated woven sheet. The total processing time from flat panel to a single curvature panel was below five minutes. A simple flat laminate and a single curvature laminate were subjected to a low velocity drop weight impact load from a soft bodied projectile. These impact events were modelled by evaluating three modelling methods for the composite panel structural response and damage evolution. Part of the evaluation criteria included whether laminate failure could be modelled successfully using only 2D shell elements. The response of the composite panel and accompanying failure were predicted with varying levels of success by the three evaluated models. The failure of interlaminar bonds (referred to as delamination) could not be predicted by either model. However two of the models predicted in-plane failure with reasonable accuracy.
1140

The effect of wood composition and compatibilisers on polyethylene/wood fibre composites

Shebani, Anour N. 12 1900 (has links)
Thesis (PhD (Chemistry and Polymer Science))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: The effects of the macromolecular composition and content of different wood species on the properties of wood-polymer composites (WPCs) achieved when using poly(vinyl alcohol-co-ethylene) (EVOH) as a compatibiliser and linear low density polyethylene (LLDPE) as a matrix, were investigated. Four wood different species (A. cyclops (acacia), E. grandis (eucalyptus), P. radiata (pine) and Q. alba (oak)) with different macromolecular composition and contents and average particle lengths were used. WPCs filled with these species and WPCs filled with the same species but without extractives were prepared using 10% wood content and different amounts (0, 2, 5, 7 and 10%) of EVOH. An EVOH content of 7% was found to be optimum. Unextracted woods produced WPCs with higher mechanical properties and better resistance to ultraviolet (UV) degradation, while the extracted woods produced WPCs with lower water absorption (WA) rates and better thermal stability. Use of unextracted A. cyclops resulted in composites with superior mechanical and thermal properties compared with the other unextracted species, most probably due to its higher cellulose and lignin contents and a favourable average wood particle length (0.225 mm). A. cyclops composites also had higher WA and thickness swelling (TS) rates most likely due to the greater number of free hydroxyl groups present in these composites because of higher cellulose content. Composites containing wood species with a high lignin and extractive content, such as A. cyclops and Q. alba, exhibited higher resistance to UV degradation. Poly(vinyl alcohol-co-ethylenes) (EVOHs) with different ethylene content (27, 32, 38 and 44%) and A. cyclops with different particle sizes (180, 250 and 450 ìm) were used to prepare WPCs with 10% A. cyclops content. The effect of the contact area between the A. cyclops particles and LLDPE achieved when using EVOHs as compatibilisers on the properties of WPCs was also investigated. The greatest improvements in the mechanical and thermal properties of composites made with A. cyclops with particle size 180 ìm were obtained when EVOH with 44% ethylene content was used. The greatest improvements in the composites made with A. cyclops with particle size 250 ìm were achieved when EVOH with 38% ethylene content was used. Composites made with A. cyclops with particle size 450 ìm exhibited better properties when EVOH with 27% ethylene content was used. All the composites that had better mechanical and thermal properties, also exhibited better compatibility and interface adhesion. Two successful approaches were used to impart more attractive ecological and economical advantages to WPCs. In the first approach, (0, 2, 5 and 7%) degraded LLDPE was used as a compatibiliser in WPCs at levels of 10, 30 and 50% wood content. The resulting mechanical properties, such as tensile strength and hardness, thermal and morphological properties of the compatibilised composites were slightly higher than those of noncompatibilised composites and virgin LLDPE. Elongation at break and impact properties of the compatibilised composites were lower than in virgin LLDPE, but higher than in noncompatibilised composites. In the second approach, polyethylene (PE) and various functionalised polyethylenes (PEs) were synthesised by copolymerising ethylene and 10-undecen-1-ol using a soluble metallocene/methylaluminoxane catalyst at room temperature. The incorporation of functional groups increased with increasing comonomer content. WPCs with 10 and 30% wood content were prepared. The composites prepared with functionalised PEs had better mechanical, thermal and morphogical properties than the composites prepared with PE. Composites made with functionalised PE with higher hydroxyl groups content exhibited better properties than composites made with functionalised PE with lower hydroxyl groups content. Composites with 10% wood content exhibited better properties and performance than composites with 30% wood content. / AFRIKAANSE OPSOMMING: Die gevolg van die makromolekulere samestelling van verskillende houtspesies op die eienskappe van hout-polimeer saamgestelde materiale (HPS) wanneer poli(viniel alcohol-ko-etileen) (EVOH) as versoeningsmiddel gebruik word saam met linieere lae digtheid poli(etileen) (LLDPE) as matriks is ondersoek. Vier houtspesies (A. cyclops (acacia), E. grandis (eucalyptus), P. radiata (pine) and Q. alba (oak)) met verskillende makromolekulere samestelling and partikelgrootte-verspreiding is gebruik in die studie. HPS materiale is berei met hierdie vesels, beide voor en na ekstraksie van die houtpartikels met onderskeidelik warm water en oplosmiddels (alleen en in kombinasie). In hierdie HPS materiale is 10% hout gebruik en 0, 2, 5, 7 en 10% EVOH. 'n EVOH inhoud van 7% is as optimum bepaal. Houtpartikels voor ekstraksie het HPS materiale met beter meganiese eienskappe en beter weerstand teen UV bestraling, terwyle partikels wat ekstraksie ondergaan het HPS materiale met laer water-absorpsie en beter hitte-stabiliteit to gevolg gehad het. Die gebruik van ongeekstraheerde A. cyclops het samegestelde materiale met die beste meganiese en termiese eienskappe tot gevolg gehad in vergelyking met die ander houtspesies (voor ekstraksie), as gevolg van die hoer sellulose en lignien inhoud van die spesie, sowel as 'n voordelige partikelgrootte-verspreiding. A. Cyclops saamgestelde materiale he took hoer waterabsorpsie (WA) en dikte-swelling (DS) tempos gehad, weens die groter hoeveelheid vrye hidroksielgroepe teenwoording in die materiale, direk in verwantskap met die sellulose-inhoud. Saamgestelde materiale met 'n hoe hoevellheid lignien en ekstraheerbare materiale (A. cyclops and Q. alba) het beter weerstand teen UV-degradasie geopenbaar. Verskillende poli(viniel alkohol-ko-etileen) polimere (EVOHs) met wisselende etileen-inhoud (27, 32, 38 en 44%) en A. Cyclops met verskillende partikel-groottes (180, 250 en 250 µm) is gebruik om HPS materiale met 10% hout te vervaardig. Die gevolg van die kontak-area tussen die houtpartikels en die LLDPE wanneer EVOHs as versoeningsmiddel gebruik is, is ook ondersoek. Die beste verbetering in die meganiese en termiese eienskappe van die saamgestelde materiale met A. cyclops met partikel-grootte 180 µm is gekry met EVOH met 44% etileen-inhoud, terwyl die beste resultate met 250 µm partikels verkry is met 'n EVOH met 38% etileen, en met 27% etileen in die geval van die 450 µm partikels. Twee benaderinge om meer aantreklike ekologiese en ekonomiese eienskappe by die HPS materiale te bewerkstellig was suksesvol. In die eerste geval is gedegradeerde LLDPE as versoeningsmiddel gebruik. Die resulterende meganiese eienskappe van die HPS materiale met LLDPE as versoeningsmiddel was beter as die HPS mateirale daarsonder. Samegestelde materiale met 10, 30 en 50% hout is vervaardig. Die trekverlenging by die breekpunt sowel as die impaksterkte van die HPS materiale was laer as LLDPE alleen, maar beter as die nie-versoende HPS materiale. In die tweede benadering is polietileen (PE) en gefunksionaliseerde PE gesintetiseer deur etileen en 10-undekeen-1-ol te koplimeriseer met ‘n oplosbare metalloseen/metiel alumoksaan katalis. Die hoeveelheid funskionele (OH) groepe is verhoog deur toenemend ekomonommer-inhoud. HPS materiale met 10 en 30% hout is vervaardig. Die saamgestelde materiale met funksionele PE het beter maganiese eienskappe gehad as die met gewone PE. Hoe hoër die hidroksielgroep-inhoud, hoe beter die eienskappe van die HPS materiale, terwyl die materiale met 10% hout beter eienskappe openbaar het as materiale met 30% hout.

Page generated in 0.162 seconds