• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 695
  • 194
  • 151
  • 98
  • 27
  • 17
  • 15
  • 10
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • 8
  • Tagged with
  • 1613
  • 1613
  • 290
  • 206
  • 186
  • 180
  • 175
  • 138
  • 135
  • 132
  • 124
  • 122
  • 119
  • 119
  • 117
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
841

Creep of Gr/BMI composite laminates in compression

Tyagi, Sanjeev R. 17 March 1994 (has links)
The main source of the time-dependent behavior of fiber-reinforced composites is their polymeric matrix, which causes concerns about their long term durability. Although for composites where organic fibers such as Graphite are used, the fibers are also a contributing factor. A composite material may exhibit an appreciable amount of creep, depending on the state of stress and temperature. Viscoelastic flow in the matrix and internal flaw formation and growth are the main sources of this creep. Thus a study was made on the viscoelastic behavior of GI/BMI fiber reinforced composite. An experimental method for testing a large number of composite materials in compression was developed. The samples were tested according to the test matrix consisting of combinations of static and cyclic loads and temperatures. The fixtures were calibrated to check the validity of measurements and reproducibility of results. Stress gradients were caused by frictional effects between the fixture and samples. The modulus change of samples over a period of time were studied. Bending parameters in samples were measured and analyzed for different stresses, clamping forces, temperatures and time. Mechanical models were used to explain the basic principles behind creep of a viscoelastic material followed by a theoretical explanation and study of creep. The linear and non-linear viscoelastic constants were studied and a methodology to analyze these results was presented. The linear and non-linear constants were used in a prediction model and predictions of a composite creep strain with time were made. Creep data obtained tor [45/0/-45/90]������ for a period of three months were compared to the prediction model. / Graduation date: 1994
842

Behavior of Full-Scale Reinforced Concrete Members with External Confinement or Internal Composite Reinforcement under Pure Axial Load

De Luca, Antonio 21 December 2009 (has links)
The need to satisfy aerospace industry's demand not met by traditional materials motivated researchers and scientists to look for new solutions. The answer was found in developing new material systems by combining together two or more constituents. Composites, also known as fiber reinforced polymers (FRP) consisting of a reinforcing phase (fibers) embedded into a matrix (polymer), offered several advantages with respect to conventional materials. High specific modulus and strength together with other beneficial properties, corrosion resistance and transparency to electrical and magnetic fields above all, made FRP also suitable for use as construction materials in structural engineering. In the early years of the twenty-first century, the publication by the American Concrete Institute (ACI) of design guidelines for the use of FRP as internal reinforcement and for external strengthening of concrete members accelerated their implementation for structural engineering applications. To date, FRP have gained full acceptance as advanced materials for construction and their use is poised to become as routine as the use of conventional structural materials such as masonry, wood, steel, and concrete. However, new concrete columns internally reinforced with FRP bars and FRP confinement for existing prismatic reinforced concrete (RC) columns have currently important unsolved issues, some of which are addressed in this dissertation defense. The dissertation is articulated on three studies. The first study (Study 1) focuses on RC columns internally reinforced with glass FRP (GFRP) bars; the second (Study 2) on RC prismatic columns externally confined by means of FRP laminates using glass and glass/basalt fibers; and the third (Study 3) is a theoretical attempt to interpret and capture the mechanics of the external FRP confinement of square RC columns. Study 1 describes an experimental campaign on full-scale GFRP RC columns under pure axial load undertaken using specimens with a 24 by 24 in. (0.61 by 0.61 m) square cross section. The study was conducted to investigate whether the compressive behavior of longitudinal GFRP bars impacts the column performance, and to understand the contribution of GFRP ties to the confinement of the concrete core, and to prevent instability of the longitudinal reinforcement. The results showed that the GFRP RC specimens behaved similarly to the steel RC counterpart, while the spacing of the ties strongly influenced the failure mode. Study 2 presents a pilot research that includes laboratory testing of full-scale square and rectangular RC columns externally confined with glass and basalt-glass FRP laminates and subjected to pure axial load. Specimens that are representative of full-scale building columns were designed according to a dated ACI 318 code (i.e., prior to 1970) for gravity loads only. The study was conducted to investigate how the external confinement affects ultimate axial strength and deformation of a prismatic RC column. The results showed that the FRP confinement increases concrete axial strength, but it is more effective in enhancing concrete strain capacity. The discussion of the results includes a comparison with the values obtained using existing constitutive models. Study 3 proposes a new theoretical framework to interpret and capture the physics of the FRP confinement of square RC columns subjected to pure compressive loads. The geometrical, physical and mechanical parameters governing the problem are analyzed and discussed. A single-parameter methodology for predicting the axial stress - axial strain curve for FRP-confined square RC columns is described. Fundamentals, basic assumptions and limitations are discussed. A simple design example is also presented.
843

Design and development of a novel lightweight long-reach composite robotic arm

Willis, Darrin 01 August 2009 (has links)
Metallic robotic arms, or manipulators, currently dominate automated industrial operations, but due to their intrinsic weight, have limited usefulness for large-scale applications in terms of precision, speed, and repeatability. This thesis focuses on exploring the feasibility of using polymeric composite materials for the construction of long-reach robotic arms. Different manipulator layouts were investigated and an ideal design was selected for a robotic arm that has a 5 [m] reach, 50 [kg] payload, and is intended to operate on large objects with complex curvature. The cross-sectional geometry of the links of the arm were analyzed for optimal stiffness- and strength-to-weight ratios that are capable of preserving high precision and repeatability under time-dependent external excitations. The results lead to a novel multi-segment link design and method of production. A proof-of-concept prototype of a two degrees-of-freedom (2-DOF) robotic arm with a reach of 1.75 [m] was developed. Both static and repeatability testing were performed for verification. The results indicated that the prototype robot main-arm constructed of carbon fiber-epoxy composite material provides good stiffness-to-weight and strength-to-weight ratios. Finite element analysis (FEA) was performed on a 3-D computer model of the arm. Successful verification led to the use of the 3-D model to define the dimensions of an industrial-sized robotic arm. The results obtained indicate high stiffness and minimal deflection while achieving a significant weight reduction when compared to commercial arms of the same size and capability.
844

Numerial modelling based on the multiscale homogenization theory. Application in composite materials and structures

Badillo Almaraz, Hiram 16 April 2012 (has links)
A multi-domain homogenization method is proposed and developed in this thesis based on a two-scale technique. The method is capable of analyzing composite structures with several periodic distributions by partitioning the entire domain of the composite into substructures making use of the classical homogenization theory following a first-order standard continuum mechanics formulation. The need to develop the multi-domain homogenization method arose because current homogenization methods are based on the assumption that the entire domain of the composite is represented by one periodic or quasi-periodic distribution. However, in some cases the structure or composite may be formed by more than one type of periodic domain distribution, making the existing homogenization techniques not suitable to analyze this type of cases in which more than one recurrent configuration appears. The theoretical principles used in the multi-domain homogenization method were applied to assemble a computational tool based on two nested boundary value problems represented by a finite element code in two scales: a) one global scale, which treats the composite as an homogeneous material and deals with the boundary conditions, the loads applied and the different periodic (or quasi-periodic) subdomains that may exist in the composite; and b) one local scale, which obtains the homogenized response of the representative volume element or unit cell, that deals with the geometry distribution and with the material properties of the constituents. The method is based on the local periodicity hypothesis arising from the periodicity of the internal structure of the composite. The numerical implementation of the restrictions on the displacements and forces corresponding to the degrees of freedom of the domain's boundary derived from the periodicity was performed by means of the Lagrange multipliers method. The formulation included a method to compute the homogenized non-linear tangent constitutive tensor once the threshold of nonlinearity of any of the unit cells has been surpassed. The procedure is based in performing a numerical derivation applying a perturbation technique. The tangent constitutive tensor is computed for each load increment and for each iteration of the analysis once the structure has entered in the non-linear range. The perturbation method was applied at the global and local scales in order to analyze the performance of the method at both scales. A simple average method of the constitutive tensors of the elements of the cell was also explored for comparison purposes. A parallelization process was implemented on the multi-domain homogenization method in order to speed-up the computational process due to the huge computational cost that the nested incremental-iterative solution embraces. The effect of softening in two-scale homogenization was investigated following a smeared cracked approach. Mesh objectivity was discussed first within the classical one-scale FE formulation and then the concepts exposed were extrapolated into the two-scale homogenization framework. The importance of the element characteristic length in a multi-scale analysis was highlighted in the computation of the specific dissipated energy when strain-softening occurs. Various examples were presented to evaluate and explore the capabilities of the computational approach developed in this research. Several aspects were studied, such as analyzing different composite arrangements that include different types of materials, composites that present softening after the yield point is reached (e.g. damage and plasticity) and composites with zones that present high strain gradients. The examples were carried out in composites with one and with several periodic domains using different unit cell configurations. The examples are compared to benchmark solutions obtained with the classical one-scale FE method. / En esta tesis se propone y desarrolla un método de homogeneización multi-dominio basado en una técnica en dos escalas. El método es capaz de analizar estructuras de materiales compuestos con varias distribuciones periódicas dentro de un mismo continuo mediante la partición de todo el dominio del material compuesto en subestructuras utilizando la teoría clásica de homogeneización a través de una formulación estándar de mecánica de medios continuos de primer orden. La necesidad de desarrollar este método multi-dominio surgió porque los métodos actuales de homogeneización se basan en el supuesto de que todo el dominio del material está representado por solo una distribución periódica o cuasi-periódica. Sin embargo, en algunos casos, la estructura puede estar formada por más de un tipo de distribución de dominio periódico. Los principios teóricos desarrollados en el método de homogeneización multi-dominio se aplicaron para ensamblar una herramienta computacional basada en dos problemas de valores de contorno anidados, los cuales son representados por un código de elementos finitos (FE) en dos escalas: a) una escala global, que trata el material compuesto como un material homogéneo. Esta escala se ocupa de las condiciones de contorno, las cargas aplicadas y los diferentes subdominios periódicos (o cuasi-periódicos) que puedan existir en el material compuesto; y b) una escala local, que obtiene la respuesta homogenizada de un volumen representativo o celda unitaria. Esta escala se ocupa de la geometría, y de la distribución espacial de los constituyentes del compuesto así como de sus propiedades constitutivas. El método se basa en la hipótesis de periodicidad local derivada de la periodicidad de la estructura interna del material. La implementación numérica de las restricciones de los desplazamientos y las fuerzas derivadas de la periodicidad se realizaron por medio del método de multiplicadores de Lagrange. La formulación incluye un método para calcular el tensor constitutivo tangente no-lineal homogeneizado una vez que el umbral de la no-linealidad de cualquiera de las celdas unitarias ha sido superado. El procedimiento se basa en llevar a cabo una derivación numérica aplicando una técnica de perturbación. El tensor constitutivo tangente se calcula para cada incremento de carga y para cada iteración del análisis una vez que la estructura ha entrado en el rango no-lineal. El método de perturbación se aplicó tanto en la escala global como en la local con el fin de analizar la efectividad del método en ambas escalas. Se lleva a cabo un proceso de paralelización en el método con el fin de acelerar el proceso de cómputo debido al enorme coste computacional que requiere la solución iterativa incremental anidada. Se investiga el efecto de ablandamiento por deformación en el material usando el método de homogeneización en dos escalas a través de un enfoque de fractura discreta. Se estudió la objetividad en el mallado dentro de la formulación clásica de FE en una escala y luego los conceptos expuestos se extrapolaron en el marco de la homogeneización de dos escalas. Se enfatiza la importancia de la longitud característica del elemento en un análisis multi-escala en el cálculo de la energía específica disipada cuando se produce el efecto de ablandamiento. Se presentan varios ejemplos para evaluar la propuesta computacional desarrollada en esta investigación. Se estudiaron diferentes configuraciones de compuestos que incluyen diferentes tipos de materiales, así como compuestos que presentan ablandamiento después de que el punto de fluencia del material se alcanza (usando daño y plasticidad) y compuestos con zonas que presentan altos gradientes de deformación. Los ejemplos se llevaron a cabo en materiales compuestos con uno y con varios dominios periódicos utilizando diferentes configuraciones de células unitarias. Los ejemplos se comparan con soluciones de referencia obtenidas con el método clásico de elementos finitos en una escala.
845

Numerical Analysis of Crack Induced Debonding Mechanisms in FRP-Strengthened RC Beams

Monteleone, Agostino 12 1900 (has links)
The continual deterioration of infrastructure has motivated researchers to look for new ways of repairing and monitoring existing structures. A particularly challenging problem confronting engineers in the revival of the infrastructure is the rehabilitation of reinforced concrete (RC) structures. Traditionally, the repair of RC beams has been achieved by bonding steel plates to the structure. Although this technique has proven to be reasonably effective, it has several distinct disadvantages such as susceptibility of the steel plates to corrode and the excessive weight of steel plates when used in long-span beams. Recently, there has been an emergence of structural engineering applications employing fibre reinforced polymer (FRP) composites as an alternative to steel plates. FRP composites are well known for their high strength- and stiffness-to-weight ratios, corrosion resistance, durability, and ease of application. Numerous studies have been conducted to prove the efficiency of bonding FRP on structural elements. In spite of this, industrial practitioners are still concerned about premature debonding of the plates before reaching the desired strength or ductility. Premature debonding initiates from the ends of the plate or from intermediate cracks (IC) in the concrete. While end initiated debonding and peeling mechanisms have been researched extensively, researchers have unanimously recognized the lack of data for the FRP-RC structural members subjected to IC debonding. The scarcity of data compiled exemplifies the need to develop more refined numerical analysis tools to reduce the high cost and significant time required to conduct full-scale physical testing. In this study, the results of a comprehensive numerical investigation are presented to assess the failure mechanisms caused by different types of flexural and shear crack distributions in RC beams strengthened with FRP composites. The model is based on damage mechanics modeling of concrete and a bilinear bond-slip relationship with softening behaviour to represent the FRP-concrete interfacial properties. A discrete crack approach was adopted to simulate crack propagation through a nonlinear fracture mechanics based finite element analysis to investigate the effects of crack spacing and interfacial parameters such as stiffness, local bond strength, and fracture energy on the initiation and propagation of the debonding and structural performance. Results from the analysis reveal that the debonding behaviour and load-carrying capacity are significantly influenced by interfacial fracture energy and crack spacing. The debonding propagation is mainly governed by mode II fracture mechanisms. The results provide an insight on the long-term behaviour of a repair system that is gaining widespread use and will be of interest to researchers and design engineers looking to successfully apply FRP products in civil engineering applications.
846

Numerical Analysis of Crack Induced Debonding Mechanisms in FRP-Strengthened RC Beams

Monteleone, Agostino 12 1900 (has links)
The continual deterioration of infrastructure has motivated researchers to look for new ways of repairing and monitoring existing structures. A particularly challenging problem confronting engineers in the revival of the infrastructure is the rehabilitation of reinforced concrete (RC) structures. Traditionally, the repair of RC beams has been achieved by bonding steel plates to the structure. Although this technique has proven to be reasonably effective, it has several distinct disadvantages such as susceptibility of the steel plates to corrode and the excessive weight of steel plates when used in long-span beams. Recently, there has been an emergence of structural engineering applications employing fibre reinforced polymer (FRP) composites as an alternative to steel plates. FRP composites are well known for their high strength- and stiffness-to-weight ratios, corrosion resistance, durability, and ease of application. Numerous studies have been conducted to prove the efficiency of bonding FRP on structural elements. In spite of this, industrial practitioners are still concerned about premature debonding of the plates before reaching the desired strength or ductility. Premature debonding initiates from the ends of the plate or from intermediate cracks (IC) in the concrete. While end initiated debonding and peeling mechanisms have been researched extensively, researchers have unanimously recognized the lack of data for the FRP-RC structural members subjected to IC debonding. The scarcity of data compiled exemplifies the need to develop more refined numerical analysis tools to reduce the high cost and significant time required to conduct full-scale physical testing. In this study, the results of a comprehensive numerical investigation are presented to assess the failure mechanisms caused by different types of flexural and shear crack distributions in RC beams strengthened with FRP composites. The model is based on damage mechanics modeling of concrete and a bilinear bond-slip relationship with softening behaviour to represent the FRP-concrete interfacial properties. A discrete crack approach was adopted to simulate crack propagation through a nonlinear fracture mechanics based finite element analysis to investigate the effects of crack spacing and interfacial parameters such as stiffness, local bond strength, and fracture energy on the initiation and propagation of the debonding and structural performance. Results from the analysis reveal that the debonding behaviour and load-carrying capacity are significantly influenced by interfacial fracture energy and crack spacing. The debonding propagation is mainly governed by mode II fracture mechanisms. The results provide an insight on the long-term behaviour of a repair system that is gaining widespread use and will be of interest to researchers and design engineers looking to successfully apply FRP products in civil engineering applications.
847

Thermal stress analysis of unidirectional fiber reinforced composites

Abedian, Ali 01 January 1998 (has links)
Composite materials are widely used in temperature fluctuating environments, which make these materials highly prone to cracking. The cracking phenomenon is a result of high thermal stresses that are generated by the mismatch in properties of the composite constituents, particularly the mismatch in the thermal expansion coefficient. The main objective of this study is to understand the micromechanics of such a phenomenon. The problem has been investigated using the finite element method (FEM). The analyses were performed utilizing 3-D prism and axisymmetric models. Hexagonal fiber packing of unidirectional composites was considered. The dimensions of the models were assumed such that the models could provide sufficient information on the behavior near the free surface as well as the interior of fiber composites. Properties of the constituents were considered to be temperature dependent. The elasto-plastic and visco-elastic characteristics of the materials were also included. The transient thermal analysis of the models showed that, for most practical applications, the temperature gradient in the composite constituents has minor effects on the stresses generated. Therefore, several stress analyses were performed assuming a uniformly changing temperature throughout the composite. The elastic analysis of thermal stresses and deformations showed high radial and hoop stress concentrations occurring at the fiber end on the free surface. This is contrary to the shear-lag theorem, which assumes that these stress components are negligible. An overlapping hypothesis, based on the deformation of the fiber and matrix, is proposed to explain such high radial and hoop stresses. Using regular FEM elements, it was concluded that the stresses are singular in nature. The stress singularity was numerically investigated and found to be of the type r -á with á being dependent on the material properties but having a value close to 1/3. The elasto-visco-plastic behavior of composites was also analyzed. Large plastic strains were localized at the fiber end even for a small temperature change. Creep effects that were significant at elevated temperatures brought about some stress relaxation during the manufacturing process. Thermally induced stress concentration in composites can be controlled, to some extent, by changing the geometry of the free surface. The analysis of such effects indicated that reduction of the contact angle between the fiber and the matrix on the fire surface reduced the high radial and hoop stress magnitudes. Also, the influence of covering the free surface of the composite with a thin layer of matrix-like material was studied. The magnitudes of the radial and hoop stress components were substantially reduced. The case when the cover and the composite are made in separate stages (two-stage covering), was also studied. Based on the analysis, effective and practical ways of applying the cover are recommended. To verify the effects of the covering process, experiments were conducted on large-scale laboratory-made composite samples. The samples with the free surface covered with a thin layer of matrix-like material showed no trace of cracking or fiber/matrix debonding even after 1000 thermal cycles. On the other hand, in the samples without cover, exposed to identical thermal cycling, numerous matrix cracks and extensive fiber/matrix debonding were observed.
848

Seismic Strengthening of Low-Rise Unreinforced Masonry Structures with Flexible Diaphragms

Moon, Franklin L. (Franklin Lehr) 11 December 2003 (has links)
As a capstone to several Mid-America Earthquake Center (MAE Center) projects, a full-scale two story unreinforced masonry (URM) building was tested following the application of several retrofit techniques, which included the use of fiber reinforced polymer (FRP) overlays, near surface mounted (NSM) rods, vertical unbonded post-tensioning, and joist anchors. The test structure was composed of four URM walls, flexible timber diaphragms and interior stud walls, and was designed and built following construction practices consistent with those used in Mid-America prior to 1950. Initial testing subjected both the roof diaphragm and in-plane walls to slowly applied lateral load reversals in an unreinforced sate. Following this series of tests, each in-plane wall was retrofit and retested. Experimental results indicated that global issues such as flange participation and the effects of overturning moment substantially impacted the response of primary components both before and after retrofit. FRP retrofit techniques resulted in strength increases up to 32% and displayed a pseudo-ductile response caused by progressive debonding. For cases where such retrofits forced sliding failures, large increases in energy dissipation resulted. The use of vertical unbonded post-tensioning resulted in strength increases between 40%-60%; however, piers displayed a tendency to switch from a ductile rocking/sliding mode to a more brittle diagonal tension mode. In addition, results highlighted the need for retrofit schemes to employ both horizontal and vertical reinforcement to prevent progressive crack opening that can decrease wall displacement capacity. Based on the experimental results, the model implied by the and quot Prestandard for the Rehabilitation of Existing Structures and quot, FEMA 356, for the analysis of in-plane URM walls was modified and extended to (1) include the effect of FRP pier retrofits and (2) consider the global effects of URM structures. The resulting model displayed reasonable estimates of measured response both before and after retrofit, with an average error of 14%. In addition, the proposed model displayed improvements over the current model from 14% to 66%. Based on the results of sensitivity analyses this improved accuracy was primarily attributed to the consideration of global effects.
849

Characterization of Actuation and Fatigue Properties of Piezoelectric Composite Actuators

Webber, Kyle Grant 20 May 2005 (has links)
Epoxy composite laminated piezoelectric stress-enhanced actuators (ECLIPSE) have been developed for potential applications by the United States Air Force and others. This class of actuators offers several advantages over other unimorph actuators such as lighter weight, design flexibility, and short production time. Anisotropic differential thermal expansion is utilized in the design of the actuators to achieve large out-of-plane curvature and place the brittle piezoelectric ceramic in residual compression. The numerous composite material choices and configurations can be used to control characteristics of the actuator such as radius of curvature and force output. ECLIPSE actuators were characterized during this study. They were made from layers of Kevlar 49/epoxy composite and a lead zirconate titanate ceramic (PZT) plate. All ECLIPSE actuators tested were built with a PZT plate with the same dimensions and material, but had different layup configurations. By changing the stacking order of the composite and PZT material, characteristics of the actuator were altered. The performance of each ECLIPSE actuator was compared. The maximum achievable displacement of each actuator was measured by cyclically applying an electric field at low frequency between zero and the maximum electric field allowable for the piezoelectric material. The frequency was also increased to a resonance condition to characterize the fatigue behavior of these actuators. In addition, the force output of various actuators was measured with a four-point bending apparatus. The experimental data was compared to a classical lamination theory model and an extended classical lamination theory model. These models were used to predict actuator behavior as well as to calculate the stress and strain distribution through the thickness of the actuator.
850

Functionally graded, multilayer diamondlike carbon-hydroxyapatite nanocomposite coatings for orthopedic implants

Bell, Bryan Frederick, Jr. 07 June 2004 (has links)
No description available.

Page generated in 0.0753 seconds