• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 695
  • 194
  • 151
  • 98
  • 27
  • 17
  • 15
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 9
  • 8
  • Tagged with
  • 1614
  • 1614
  • 290
  • 206
  • 186
  • 180
  • 175
  • 138
  • 135
  • 132
  • 125
  • 122
  • 119
  • 119
  • 117
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
871

Methodologies for the optimization of fibre-reinforced composite structures with manufacturing uncertainties

Hamilton, Ryan Jason January 2006 (has links)
Thesis (M.Tech.:Mechanical Engineering)-Dept. of Mechanical Engineering, Durban University of Technology, 2006 xv, iii, 108 leaves / Fibre Reinforced Plastics (FRPs) have been used in many practical structural applications due to their excellent strength and weight characteristics as well as the ability for their properties to be tailored to the requirements of a given application. Thus, designing with FRPs can be extremely challenging, particularly when the number of design variables contained in the design space is large. For example, to determine the ply orientations and the material properties optimally is typically difficult without a considered approach. Optimization of composite structures with respect to the ply angles is necessary to realize the full potential of fibre-reinforced materials. Evaluating the fitness of each candidate in the design space, and selecting the most efficient can be very time consuming and costly. Structures composed of composite materials often contain components which may be modelled as rectangular plates or cylindrical shells, for example. Modelling of components such as plates can be useful as it is a means of simplifying elements of structures, and this can save time and thus cost. Variations in manufacturing processes and user environment may affect the quality and performance of a product. It is usually beneficial to account for such variances or tolerances in the design process, and in fact, sometimes it may be crucial, particularly when the effect is of consequence. The work conducted within this project focused on methodologies for optimally designing fibre-reinforced laminated composite structures with the effects of manufacturing tolerances included. For this study it is assumed that the probability of any tolerance value occurring within the tolerance band, compared with any other, is equal, and thus the techniques are aimed at designing for the worst-case scenario. This thesis thus discusses four new procedures for the optimization of composite structures with the effects of manufacturing uncertainties included.
872

Optimum design of grid structures of revolution using homogenised model.

Slinchenko, Denys. January 2000 (has links)
The present study involves analysis and design optimisation of lattice composite structures using symbolic computation. The concept of a homogenised model is used to represent heterogeneous composite isogrid structure as a homogeneous structure with the stiffness equivalent to the original grid structure. A new homogenisation technique is developed and used in the present study. The configuration of a unit cell and the geometrical parameters of the ribs of a composite isogrid cylinder are optimised subject to a strength criterion in order to maximise externally applied loading to provide maximum strength and stiffness of the structure as a whole. The effects of tension and torsion on the optimum design are investigated. Special purpose computation routines are developed using the symbolic computation package Mathematica for the calculation of equivalent stiffness of a structure, failure analysis and calculation of optimum design parameters. The equivalent stiffness homogenisation approach, in conjunction with optimum search routines, is used to determine the optimal values of the design variables. The numerical approach employed in the present study was necessitated by the computational inefficiency and conventional difficulties of linking the optimiser and the FEM analysis package for calculating the stress resultants used in the optimisation process. These drawbacks were successfully overcome by developing special purpose symbolic computation routines to compute stress resultants directly in the program using a new homogenisation approach for the model with equivalent stiffness. In the design optimisation of cylindrical isogrids the computational efficiency of the optimisation algorithm is improved and good accuracy of the results has been achieved. The investigation on the basis of failure analysis shows that the difference in the value of the maximum load applied to the optimal and non-optimal isogrid structure can be quite substantial, emphasising the importance of optimisation for the composite isogrid structures. The computational efficiency of optimisation algorithms is critical and therefore special purpose symbolic computation routines are developed for its improvement. A number of optimal design problems for isogrid structures are solved for the case of maximum applied load design. / Thesis (Ph.D.)-University of Natal, Durban, 2000.
873

Optimisation of the process parameters of the resin film infusion process.

Von Klemperer, Christopher Julian. January 1999 (has links)
The resin film infusion process or RFI is a vacuum assisted moulding method for producing high quality fibre reinforced components. The goals of this research have been to investigate this new process, with the aim of determining how the process could be used by the South African composites industry. This included factors such as suitable materials systems, and optimum process parameters. The RFI process is a new composite moulding method designed to allow fibre reinforced products to be manufactured with the ease of pre-preg materials while still allowing any dry reinforcement material to be used. The high pressures required for traditional manufacturing methods such as autoclaves, matched dies and R TM can be avoided while still having very accurate control over the fibre / resin ratio. Moreover, the RFI process is a "dry" process and hence avoids many of the environmental and health concerns associated with wet lay-up and vacuum bag techniques. Furthermore the simple lay-up process requires less skill than a wet lay-up and vacuum bag method. Through a combination of mathematical modelling and physical testing, a material system has been identified. The primary process parameters were identified and a strenuous regime of testing was performed to find optimum values of these parameters. These results were finally feed back into the development of the mathematical model. / Thesis (Ph.D.)-University of Natal, Durban, 1999.
874

Finite element and analytical solutions for the optimal design of laminated composites.

Reiss, Talmon. January 1996 (has links)
The present study involves the analysis and design optimisation of composite structures using analytical and numerical methods. Five different problems are considered. The first problem considers the design of laminated plates subject to non-uniform temperature distributions. The plates are optimised for maximum buckling temperature using the fibre angle as the optimising variable. The method of solution involves the finite element method based on Mindlin theory for thin laminated plates and shells, and numerical optimisation. A computational approach is developed which involves successive stages of solution for temperature distribution, buckling temperature and optimal fibre angle. Three different temperature loadings are considered and various combinations of simply supported and clamped boundary conditions are studied. The effect of plate aspect ratio on the optimal fibre angle and the maximum buckling temperature is investigated. The influence of bending-twisting coupling on the optimum design is studied by considering plates with increasing number of layers. The second problem concerns the optimal design of composite pressure vessels. Finite element solutions are presented for the design of hemispherically and flat capped symmetrically laminated pressure vessels subjected to external pressure. The effect of vessel length, radius and wall thickness, as well as bending-twisting coupling and hybridisation on the optimal ply angle and buckling pressure are numerically studied. Comparisons of the optimal fibre angles and maximum buckling pressures for various vessel geometries are made with those for hybrid pressure vessels. In the third problem, the multiobjective design of a symmetrically laminated shell is obtained with the objectives defined as the maximisation of the axial and torsional buckling loads. The ply angle is taken as the optimising variable and the performance index is formulated as the weighted sum of individual objectives in order to obtain Pareto optimal solutions of the design problem. Single objective design results are obtained and compared with the multiobjective design. The effect of weighting factors on the optimal design is investigated. Results are given illustrating the dependence of the optimal fibre angle and performance index on the cylinder length, radius and wall thickness. In the fourth problem, the optimal layup with least weight or cost for a symmetrically laminated plate subject to a buckling load is determined using a hybrid composite construction. A hybrid construction provides further tailoring capabilities and can meet the weight, cost and strength constraints while a non-hybrid construction may fail to satisfy the design requirements. The objective of the optimisation is to minimise either the weight or cost of the plate using the ply angles, layer thicknesses and material combinations as design variables. As the optimisation problem contains a large number of continuous (ply angles and thicknesses) and discrete (material combinations) design variables, a sequential solution procedure is devised in which the optimal variables are computed in different stages. The proposed design method is illustrated using graphite, kevlar and glass epoxy combinations and the efficiency of the hybrid designs over the non-hybrid ones are computed. Finally, the minimum deflection and weight designs of laminated composite plates are given in the fifth and last problem. The finite element method is used in conjunction with optimisation routines in order to obtain the optimal designs, as was the procedure in the first problem. Various boundary conditions are considered and results are given for varying aspect ratios and for different loading types. / Thesis (Ph.D.)-University of Natal, Durban, 1996.
875

Environmental durability of E-glass/vinylester composites in hot-moist conditions

Sridharan, Srinivasan 12 1900 (has links)
No description available.
876

Fatigue damage mechanisms of advanced hybrid titanium composite laminates

Rhymer, Donald William 12 1900 (has links)
No description available.
877

Investigation of cold temperature and environmental effects of adhesively bonded joints

Lubke, Kathleen A. 05 1900 (has links)
No description available.
878

Three-dimensional micromechanical models for the nonlinear analysis of pultruded composite structures

Kilic, Mustafa Hakan 12 1900 (has links)
No description available.
879

Design and manufacturing of composite structures using the resin transfer molding technique

Keulen, Casey James 22 December 2007 (has links)
Composite materials have the potential to revolutionize life in the 21st century. They are contributing significantly to developments in aerospace, hydrogen fuel cells, electronics and space exploration today. While a number of composite material processing methods exist, resin transfer molding (RTM) has the potential of becoming the dominant low-cost process for the fabrication of large, high-performance products. RTM has many advantages over alternative processes, including the capability of producing complex 3D shapes with a good surface finish, the incorporation of cores and inserts, a tight control over fiber placement and resin volume fraction and the possibility of embedding sensors into manufactured components for structural health monitoring. Part of the reason RTM has not received widespread use is due to its drawbacks such as its relatively trial and error nature, race tracking, washout, high cycle time and void formation. The basic operation of the process involves loading a fiber reinforcement preform into a mold cavity, closing the mold, injecting resin into the mold and allowing the resin to cure. To study the resin transfer molding process and issues affecting it, a laboratory containing an experimental RTM apparatus has been established. The apparatus has a glass window to observe the mold filling process and can incorporate various mold shapes such as a quasi-2D panel, a 3-D rectangular section and a 3-D semicircular section. To characterize the flow through the molds a commercial CFD software has been used. This thesis describes the establishment of this laboratory and preliminary studies that have been conducted.
880

Process and structural health monitoring of composite structures with embedded fiber optic sensors and piezoelectric transducers

Keulen, Casey James 24 August 2012 (has links)
Advanced composite materials are becoming increasingly more valuable in a plethora of engineering applications due to properties such as tailorability, low specific strength and stiffness and resistance to fatigue and corrosion. Compared to more traditional metallic and ceramic materials, advanced composites such as carbon, aramid or glass reinforced plastic are relatively new and still require research to optimize their capabilities. Three areas that composites stand to benefit from improvement are processing, damage detection and life prediction. Fiber optic sensors and piezoelectric transducers show great potential for advances in these areas. This dissertation presents the research performed on improving the efficiency of advanced composite materials through the use of embedded fiber optic sensors and surface mounted piezoelectric transducers. Embedded fiber optic sensors are used to detect the presence of resin during the injection stage of resin transfer molding, monitor the degree of cure and predict the remaining useful life while in service. A sophisticated resin transfer molding apparatus was developed with the ability of embedding fiber optics into the composite and a glass viewing window so that resin flow sensors could be verified visually. A novel technique for embedding optical fiber into both 2- and 3-D structures was developed. A theoretical model to predict the remaining useful life was developed and a systematic test program was conducted to verify this model. A network of piezoelectric transducers was bonded to a composite panel in order to develop a structural health monitoring algorithm capable of detecting and locating damage in a composite structure. A network configuration was introduced that allows for a modular expansion of the system to accommodate larger structures and an algorithm based on damage progression history was developed to implement the network. The details and results of this research are contained in four manuscripts that are included in Appendices A-D while the body of the dissertation provides background information and a summary of the results. / Graduate

Page generated in 0.0798 seconds