• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Compensation des déformations induites thermiquement dans les matériaux composites à l'aide d'un piézocomposite

Gakwaya, Myriam 11 April 2018 (has links)
L'objectif du projet de recherche est de connaître le potentiel du piézocomposite MFC™ en tant qu'élément actif pour compenser les déformations induites thermiquement dans les structures composites. Un modèle numérique 3Dest donc développé à l'aide du logiciel de modélisation par la méthode des éléments finis ABAQUS afin de prédire la forme résultante des structures activées par l'actuateur MFC™. Afin d'utiliser le modèle, les propriétés élastiques et thermiques de l'actuateur sont estimées dans les plans 1-3 et 2-3 puisque les propriétés élastiques et thermiques sont données par le manufacturier seulement pour le plan 1-2. Par la suite, les coefficients d'expansion thermique et les coefficients de déformation piézoélectrique de l'actuateur sont mesurés. Une fois les propriétés de l'actuateur connues, sa capacité à déformer une structure simple est étudiée. La déflexion d'une plaque d'aluminium et d'une plaque composite [O4] induite par l'actuateur MFC™ lorsqu'une différence de potentiel est appliquée à ses bornes sont prédites par le modèle numérique. L'essai est ensuite reproduit expérimentalement. Finalement, la possibilité d'utiliser l'actuateur MFC™ afin de compenser les déformations thermiques dans les structures composites est étudiée. Pour ce faire, une plaque composite [0/90/90/90]T sur laquelle deux actuateurs MFC™ sont collés est modélisée dans le logiciel ABAQUS. Cette plaque est par la suite fabriquée et les résultats obtenus pour le modèle numérique et l'essai expérimental sont comparés. L'actuateur MFC™ peut compenser la déformation d'une plaque [0/90/90/90]T induite par une changement de température de 10°C. Le modèle éléments finis développé prédit précisément le comportement d'une structure simple activée par l'actuateur, mais est moins précis dans la prédiction de la forme résultante d'un composite [0/90/90/90]T soumis à un chargement thermique et activé par l'actuateur MFC™.
2

Effet des modifications de surface de fibres lignocellulosiques sur les propriétés morphologiques, mécaniques et physiques de composites à base de polyéthylène linéaire de basse densité par rotomoulage

Hanana, Fatima Ezzahra 23 May 2018 (has links)
Cette thèse se décline en six parties. Le premier volet porte sur la compréhension du procédé de rotomoulage et une description des matériaux composites à base de fibres lignocellulosiques. Le second volet comporte une revue de la littérature sur les composites produits par rotomoulage, tandis que le troisième volet se consacre à la compréhension de la modification des fibres d’érables par le polyéthylène maléisé (MAPE) en solution et son influence et de la teneur en fibre sur les propriétés morphologiques et mécaniques des composites. Le quatrième volet étudie les effets de la taille des particules et la modification en solution, ainsi que la teneur en fibre sur les propriétés morphologiques, thermiques, physiques et mécaniques des composites. Le cinquième volet se penche sur l’effet de la modification, la teneur et la taille des fibres d’érable sur la morphologie et les propriétés physiques et mécaniques des auto-hybrides. Finalement, le dernier volet étudie l’influence de la modification en solution avec du MAPE, la teneur et la taille des fibres sur la morphologie et les propriétés mécaniques des composites hybrides à base de fibres d’érable et de chanvre. Les résultats montrent que les fibres (érable et chanvre) ont été modifiées avec succès par le MAPE en solution, ce qui a amélioré la qualité de l’interface fibre-matrice des composites, conduisant à de meilleures propriétés mécaniques. En outre, les résultats ont prouvé que l’effet de la taille de particule était significatif. En effet, le module de traction augmente jusqu’à 73% lors de l’utilisation de fibres d’érable de 355-500 μm à 30% en poids. Une augmentation de 52% de la résistance au choc a été réalisée avec l’utilisation de 30% en poids de fibre d’érable (355-500 μm) comparé à ceux produits avec 125-250 μm. D’autre part la production de composites auto-hybrides a été en mesure d'améliorer les propriétés mécaniques comparées aux composites simples. Enfin, une augmentation du module de traction (63%), de la contrainte maximale (17%) et de la densité (17%) a été réalisée lors de l’utilisation d’un ratio de 75/25 de fibre d’érable/chanvre à 20% en poids total de fibre par rapport à la matrice seule. / This thesis is divided into six parts. The first part is related to the understanding of the rotomolding process and a description of composite materials based on lignocellulosic fibers. In the second part, a literature review on composites produced by rotomolding is presented. The objective of the third part is to understand the modification of maple fibers in solution by maleated polyethylene (MAPE) and its effect combined with fiber content on the morphological and mechanical properties of the composites. The fourth part studies the effects of fiber size, modification in solution as well as fiber content on the morphological, thermal, physical and mechanical properties of the composites. The fifth part investigates the effect of MAPE modification in solution, fiber content and particle size of maple fibers on the morphological and mechanical properties of selfhybrid composites. Finally, the effect of the surface treatment in solution, the content and the fiber size (maple and hemp) on hybrid composites is presented. The results showed that the fibers (maple and hemp) were successfully modified by MAPE in solution, which improved the interface quality between the matrix and fibers, leading to better mechanical properties. Moreover, the results showed that the effect of fiber size was significant as the tensile modulus increased by up to 73% with the use of 355-500 μm at 30% wt. of maple fiber compared to those produced with 125-250 μm. The production of self-hybrid composites was able to improve the mechanical properties compared to simple composites. An increase in the tensile modulus (63%), tensile strength (17%) and density (17%) was obtained by using a 75/25 ratio of maple/hemp fibers at a total fiber content of 20% wt. compared to the neat matrix.
3

Effet des modifications de surface sur les propriétés morphologiques, mécaniques et rhéologiques de composites à base de fibres biosourcées et de polyéthylène

Chimeni Yomeni, Desire 24 April 2018 (has links)
Cette thèse porte sur la compréhension de l'impact des modifications de surface des fibres de chanvre d’une part (250 µm - 1 mm et prétraitées par une solution de NaOH à 8%, afin de densifier le nombre de sites actifs à leur surface) et de cellulose (≤ 200 µm) d’autre part sur les propriétés de leurs composites à base de polyéthylène linéaire de densité moyenne (LMDPE). Deux approches de modifications différentes (par du polyéthylène greffé d’anhydride maléique (MAPE) en solution (chanvre et cellulose) et par polymérisation catalytique (chanvre)) encore peu connues sont utilisées. Les deux premières parties de ce travail de thèse ont porté sur la compréhension de l'impact de la modification des fibres de chanvre en solution sur les comportements morphologiques et mécaniques de leurs composites de LMDPE, ainsi que sur l'analyse qualitative et quantitative de leur interface (chanvre/LMDPE), avec une emphase sur la comparaison entre elles, l’utilisation directe du MAPE et la combinaison des deux (modification en solution et l’utilisation directe). La suite a porté sur l’évaluation de l'effet de la nature des fibres sur le comportement des composites en modifiant par le MAPE en solution, de la poudre cellulosique extraite du bois de peuplier faux-tremble. Enfin, l'ultime partie a porté sur la modification des fibres de chanvre par la technique de polymérisation catalytique à l'aide d'un catalyseur de type Ziegler/Natta. Pour les fibres (chanvre et cellulose), les résultats ont montré qu’elles ont été modifiées avec succès par le MAPE en solution ainsi que les fibres de chanvre par polymérisation catalytique, ce qui a permis l'amélioration de la qualité de l'interface fibres-matrice des composites correspondants. Les résultats des tests effectués ont montré que le traitement au NaOH contrôlait principalement le niveau de mouillabilité (contact physique) des fibres de chanvre par la matrice, tandis que l'utilisation d'un agent de couplage (direct ou en solution) contrôlait l'adhésion interfaciale (interactions chimiques). Par rapport aux composites ayant les fibres non modifiées, une augmentation de la contrainte maximale de 21% pour le composite aux fibres modifiées en solution, 24% après l'utilisation du MAPE directe et 31% lors du mélange des deux méthodes ont été observées. L'utilisation directe du MAPE a aussi amélioré significativement le module de Young des composites de 17%, suivie du mélange des deux voies avec 6% d’amélioration, alors que la modification en solution n'a pas affecté significativement cette propriété. L’utilisation des fibres cellulosiques a augmenté à la fois la contrainte du composite aux fibres non traitées et traitées avec une amélioration de 29% pour le composite aux fibres modifiées. Enfin, la modification des fibres de chanvre par polymérisation catalytique a permis une augmentation significative du module de Young et de la contrainte maximale des matériaux composites de 8 et 43% respectivement par rapport au composite de fibres non traitées. / This doctoral thesis focuses on understanding the effect of surface modifications of hemp fibers on the one hand (250 μm - 1 mm and 8% NaOH pretreated to increase the number of active sites on their surface) and cellulose (≤ 200 μm) on the other hand, on the properties of linear medium density polyethylene (LMDPE) based composites. Two different modification approaches (MAPE in a solution (hemp and cellulose) and catalytic polymerization (hemp)) not yet well known were investigated. The first two parts of this thesis focused on understanding the effect of solution modification of hemp fiber on LMDPE composite morphological and mechanical behavior, as well as a qualitative and quantitative analysis of their interface, with emphasis on the comparison between them, the direct use of MAPE and the combination of both methods (solution and direct modification). Then, the work focused on evaluating the effect of fiber type on the composite behavior. For this purpose, the cellulose powder (≤ 200 μm) extracted from wood (Aspen wood) was modified by MAPE in a xylene solution to improve the properties of LMDPE based composites. Finally, the last part focused on the modification of hemp fibers by catalytic polymerization. For the fibers (hemp and cellulose), the results showed that they were successfully modified by MAPE in solution, as well as by catalytic polymerization for hemp. This enhanced the quality of the corresponding fiber-matrix interface. The results showed that NaOH pre-treatment mainly controlled the wettability level (physical contact) of hemp fibers by the matrix, while the use of a coupling agent (directly or in solution) controlled the interfacial adhesion (chemical interactions). Compared to the composites with unmodified fibers, an increase of the tensile strength by 21% for solution modified fiber composite, 24% after the direct use of MAPE and 31% upon combining both methods, were observed. The direct use of MAPE also significantly improved the composite Young's modulus by about 17%, followed by the combination of both method with 6% improvement, while the solution modification did not significantly affect this property. The use of cellulosic fibers increased the tensile strength of both unmodified and modified fibers composite with a 29% improvement for the composite with modified fibers. Finally, hemp modification by catalytic polymerization resulted in a significant increase in Young's modulus and tensile strength of the corresponding composite by about 8% and 43% respectively, compared to the composite with untreated fibers.
4

Matériaux composites à base de fibres de chanvre

Ringuette, Benoît 17 April 2018 (has links)
Dans ce projet, on évalue l'effet du type de traitement et de la taille de la fibre de chanvre pour des applications dans des composites thermoplastiques. La matrice sélectionnée est le polyethylene de haute densité (PEHD). Au total, quatre polyéthylènes/agents couplant ont été sélectionnés pour modifier l'interface fibre-matrice dans le but d'améliorer les propriétés mécaniques du composite. Les objectifs secondaires de cette étude sont: de prétraiter la fibre de chanvre de façon thermomécanique avant son incorporation dans la matrice, de déterminer les paramètres optimaux de mise en oeuvre afin de préparer le matériau composite par extrusion, ainsi que caractériser de façon mécanique les matériaux composites en tension, flexion et impact. Les résultats obtenus indiquent que la farine de chanvre se comporte plutôt bien par rapport aux fibres. De plus, la pression de vapeur lors du traitement thermomécanique ne fait aucune différence sur les propriétés du matériau composite. Aussi, l'ajout d'agent couplant fait une différence dans les propriétés mécaniques des matériaux composites alors que le meilleur agent couplant a été le Dupont WPC-576D. Finalement, le moment d'ajouter l'agent couplant (au prétraitement ou dans l'extrudeuse) ne fait aucune différence sur les propriétés des matériaux composites.

Page generated in 0.1337 seconds