11 |
Universal Composition Operators on the Hardy Space with Linear Fractional SymbolsHassan, Aiham A. 11 August 2023 (has links)
No description available.
|
12 |
Spectral Theory Of Composition Operators On Hardy Spaces Of The Unit Disc And Of The Upper Half-planeGul, Ugur 01 February 2007 (has links) (PDF)
In this thesis we study the essential spectrum of composition operators on the Hardy space of the unit disc and of the upper half-plane. Our starting point is the spectral analysis of the composition operators induced by translations of the upper half-plane. We completely characterize the essential spectrum of a class of composition operators that are induced by perturbations of translations
|
13 |
Complex Symmetry of Weighted Composition Operators and Toeplitz Operators with respect to Weighted Composition ConjugationsNawalage, Uthpala Hemali January 2020 (has links)
No description available.
|
14 |
Toeplitzness of Composition Operators and Parametric ToeplitznessNikpour, Mehdi January 2012 (has links)
No description available.
|
15 |
Spectra of Composition Operators on the Unit Ball in Two Complex VariablesMichael R Pilla (8882636) 15 June 2020 (has links)
Let <i>φ</i> be a self-map of <b>B</b><sub>2</sub>, the unit ball in <b>C</b><sup>2</sup>. We investigate the equation <i>C<sub>φ</sub>f</i>=<i>λf</i> where we define <i>C<sub>φ</sub>f </i>: -<i>f◦φ</i>, with <i>f a</i> function in the Drury Arves on Space. After imposing conditions to keep <i>C<sub>φ</sub></i> bounded and well-behaved, we solve the equation <i>C<sub>φ</sub>f - λf </i>and determine the spectrum <i>σ</i>(<i>C<sub>φ</sub></i>) in the case where there is no interior fixed point and boundary fixed point without multiplicity. We then investigate the existence of one-parameter semigroups for such maps and discuss some generalizations.
|
16 |
Carleson-type inequalitites in harmonically weighted Dirichlet spacesChacon Perez, Gerardo Roman 01 May 2010 (has links)
Carleson measures for Harmonically Weighted Dirichlet Spaces are characterized. It is shown a version of a maximal inequality for these spaces. Also, Interpolating Sequences and Closed-Range Composition Operators are studied in this context.
|
17 |
Universality of Composition Operator with Conformal Map on theUpper Half PlaneAlmohammedali, Fadelah Abdulmohsen January 2021 (has links)
No description available.
|
18 |
Disjoint Hypercyclic and Supercyclic Composition OperatorsMartin, Ozgur 04 August 2010 (has links)
No description available.
|
19 |
Hypercyclic Operators and their Orbital Limit PointsSeceleanu, Irina 14 August 2010 (has links)
No description available.
|
20 |
Study of the composition models of field functions in computer graphics / Etude des modèles de composition de fonctions de champ scalaire en informatique graphiqueCanezin, Florian 08 September 2016 (has links)
Les fonctions de champ scalaire sont un outil mathématique puissant pour la représentation de surfaces en informatique graphique. Malgré l'information de volume qu'elles offrent, combiné aux modèles de composition qui les accompagnent, les fonctions de champ scalaire ne sont encore utilisées que dans très peu d'applications en raison de leurs limitations, telles qu'une interaction utilisateur lente et un contrôle de la forme de la surface difficile.Dans cette thèse, nous étudions ces modèles de composition dans le but de les développer, de les améliorer et de faire en sorte qu'ils soient efficaces et pertinents pour l'informatique graphique. Pour cela, nous nous intéressons à deux applications.La première est la modélisation géométrique, où les fonctions de champ scalaire représentent des composants d'objets qui sont assemblés par paires dans un processus de création incrémental pour construire des objets complexes. Nous proposons une représentation unifiée des fonctions de champ scalaire et du modèle de composition afin d'obtenir un processus de modélisation plus stable et sans artefacts.La deuxième application à laquelle nous nous intéressons est la simulation et la reconstruction de fluides basées particules. Ici, les fonctions de champ scalaire représentent les contributions des particules qui échantillonnent le volume du fluide. Ces contributions sont alors combinées d'un coup pour reconstruire la surface du fluide. Nous proposons dans ce cadre de prendre en compte la topologie de la surface reconstruite dans la simulation, évitant ainsi un comportement inapproprié des particules, et donc du fluide ainsi simulé. / Field functions are a powerful mathematical tool for surface representation in computer graphics. Despite the volume information they provide, combined with the composition models accompanying them, field functions are still used in only a few number of applications due to their limitations such as slow user interactions and a difficult shape control.In this thesis we study these composition models in order to develop and improve them and make them efficient and relevant for computer graphics. We do so through two applications.The first one is geometric modelling, where field functions represent object compounds that are combined pairwisely in an iterative creation process to design complex objects. We propose to unify and make consistent both the field function representation and the composition model to provide a more stable and artefact-free modelling process.The second one is fluid simulation and reconstruction based on particles. Here, field functions represent contributions of the particles sampling the fluid volume. These contributions are then combined in a row to build the fluid surface. In this application, we propose to take the topology of the reconstructed surface into account when running the fluid simulation, thus avoiding an inappropriate behavior of the particles, and then of the simulated fluid.
|
Page generated in 0.0982 seconds