Spelling suggestions: "subject:"hardy space"" "subject:"hardy apace""
1 |
Universal Composition Operators on the Hardy Space with Linear Fractional SymbolsHassan, Aiham A. 11 August 2023 (has links)
No description available.
|
2 |
Hardy-space Function Theory on Finitely Connected Planar DomainsGuerra Huaman, Moises Daniel 07 May 2008 (has links)
Hardy space scalar theory on the disk is now classical. Some extensions have been done, one of them is the approach done by Donald Sarason using Laurent series. We present the more complicated function theory, without the use of either power series or Laurent series, for finitely-connected planar domains. / Master of Science
|
3 |
Multipoint Padé approximants used for piecewise rational interpolation and for interpolation to functions of Stieltjes' typeGelfgren, Jan January 1978 (has links)
A multipoint Padë approximant, R, to a function of Stieltjes1 type is determined.The function R has numerator of degree n-l and denominator of degree n.The 2n interpolation points must belong to the region where f is analytic,and if one non-real point is amongst the interpolation points its complex-conjugated point must too.The problem is to characterize R and to find some convergence results as n tends to infinity. A certain kind of continued fraction expansion of f is used.From a characterization theorem it is shown that in each step of that expansion a new function, g, is produced; a function of the same type as f. The function g is then used,in the second step of the expansion,to show that yet a new function of the same type as f is produced. After a finite number of steps the expansion is truncated,and the last created function is replaced by the zero function.It is then shown,that in each step upwards in the expansion a rational function is created; a function of the same type as f.From this it is clear that the multipoint Padê approximant R is of the same type as f.From this it is obvious that the zeros of R interlace the poles, which belong to the region where f is not analytical.Both the zeros and the poles are simple. Since both f and R are functions of Stieltjes ' type the theory of Hardy spaces can be applied (p less than one ) to show some error formulas.When all the interpolation points coincide ( ordinary Padé approximation) the expected error formula is attained. From the error formula above it is easy to show uniform convergence in compact sets of the region where f is analytical,at least wien the interpolation points belong to a compact set of that region.Convergence is also shown for the case where the interpolation points approach the interval where f is not analytical,as long as the speed qî approach is not too great. / digitalisering@umu
|
4 |
Toeplitzness of Composition Operators and Parametric ToeplitznessNikpour, Mehdi January 2012 (has links)
No description available.
|
5 |
Operator valued Hardy spaces and related subjectsMei, Tao 30 October 2006 (has links)
We give a systematic study of the Hardy spaces of functions with values in
the non-commutative Lp-spaces associated with a semifinite von Neumann algebra
M. This is motivated by matrix valued harmonic analysis (operator weighted norm
inequalities, operator Hilbert transform), as well as by the recent development of
non-commutative martingale inequalities. Our non-commutative Hardy spaces are
defined by non-commutative Lusin integral functions. It is proved in this dissertation
that they are equivalent to those defined by the non-commutative Littlewood-Paley
G-functions.
We also study the Lp boundedness of operator valued dyadic paraproducts and
prove that their Lq boundedness implies their Lp boundedness for all 1 < q < p < âÂÂ.
|
6 |
Semigroupes d'opérateurs de composition sur des espaces de Hardy pondérés / Semigroups of composition operators on weighted Hardy spacesAvicou, Corentin 09 November 2015 (has links)
Cette thèse se situe à l'intersection de plusieurs domaines mathématiques particulièrement actifs actuellement : l'analyse fonctionnelle, la théorie des opérateurs, la dynamique complexe et la théorie des semigroupes. Nous étudierons ici les semigroupes d'opérateurs de composition sur quelques espaces de Hardy pondérés, notamment l'espace de Hardy du disque et l'espace de Dirichlet. Dans un premier temps, nous allons voir pourquoi se placer à cette intersection est pertinent, en montrant comment utiliser les propriétés des semigroupes pour calculer explicitement les normes de certains opérateurs de composition. Dans un second temps, nous étudierons les propriétés des semigroupes d'opérateurs de compositions qui sont directement accessibles à partir de la seule donnée du générateur infinitésimal du semigroupe, en nous concentrant tout particulièrement sur les notions d'analyticité et de compacité / This thesis takes place at the intersection of several particularly active mathematical areas : functional analysis, operator theory, complex dynamics and theory of semigroups. Here, we study semigroups of composition operators on some weighted Hardy spaces, in particular the Hardy space of the disk and the Dirichlet space. First, we will show why this intersection is relevant for our study, pointing out how to use the properties of semigroups to explicitly compute the norms of some composition operators. Secondly, we will study the properties of semigroups of composition operators that are directly accessible from the only data of the infinitesimal generator, focusing on analyticity and compactness
|
7 |
Commutants of composition operators on the Hardy space of the diskCarter, James Michael 06 November 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The main part of this thesis, Chapter 4, contains results on the commutant of a semigroup of operators defined on the Hardy Space of the disk where the operators have hyperbolic non-automorphic symbols. In particular, we show in Chapter 5 that the commutant of the semigroup of operators is in one-to-one correspondence with a Banach algebra of bounded analytic functions on an open half-plane. This algebra of functions is a subalgebra of the standard Newton space. Chapter 4 extends previous work done on maps with interior fixed point to the case of the symbol of the composition operator having a boundary fixed point.
|
8 |
Nouvelles approches de modélisation multidimensionnelle fondées sur la décomposition de WoldMerchan Spiegel, Fernando 14 December 2009 (has links)
Dans cette thèse nous proposons de nouveaux modèles paramétriques en traitement du signal et de l'image, fondés sur la décomposition de Wold des processus stochastiques. Les approches de modélisation font appel à l'analyse fonctionnelle et harmonique, l'analyse par ondelettes, ainsi qu'à la théorie des champs stochastiques. Le premier chapitre a un caractère introductif théorique et précise les éléments de base concernant le contexte de la prédiction linéaire des processus stochastiques stationnaires et la décomposition Wold, dans le cas 1-D et multi-D. On montre comment les différentes parties de la décomposition sont obtenues à partir de l'hypothèse de stationnarité, via la représentation du processus comme l'orbite d'un certain opérateur unitaire, l'isomorphisme canonique de Kolmogorov et les conséquences sur la prédiction linéaire du théorème de Szégö et de ses extensions multidimensionnelles. Le deuxième chapitre traite une approche de factorisation spectrale de la densité spectrale de puissance qu'on utilisera pour l'identification des modèles de type Moyenne Ajustée (MA), Autorégressif (AR) et ARMA. On utilise la représentation par le noyau reproduisant de Poisson d'une fonction extérieure pour construire un algorithme d'estimation d'un modèle MA avec une densité spectrale de puissance donnée. Cette méthode d'estimation est présentée dans le cadre de deux applications: - Dans la simulation de canaux sans fil de type Rayleigh (cas 1-D). - Dans le cadre d'une approche de décomposition de Wold des images texturées (cas 2-D). Dans le troisième chapitre nous abordons la représentation et la compression hybride d'images. Nous proposons une approche de compression d'images qui utilise conjointement : - les modèles issus de la décomposition de Wold pour la représentation des régions dites texturées de l'image; - une approche fondée sur les ondelettes pour le codage de la partie "cartoon" (ou non-texturée) de l' image. Dans ce cadre, nous proposons une nouvelle approche pour la décomposition d'une image dans une partie texturée et une partie non-texturée fondée sur la régularité locale. Chaque partie est ensuite codée à l'aide de sa représentation particulière. / In this thesis we propose new parametric models in signal and image processing based on the Wold decomposition of stationary stochastic processes. These models rely upon several theoretical results from functional and harmonic analysis, wavelet analysis and the theory of stochastic fields, The first chapter presents the theoretical background of the linear prediction for stationary processes and of the Wold decomposition theorems in 1-D and n-D. It is shown how the different parts of the decomposition are obtained and represented, by the means of the unitary orbit representation of stationary processes, the Kolmogorov canonical model and Szego-type extensions. The second chapter deals with a spectral factorisation approach of the power spectral density used for the parameter estimation of Moving Avergage (MA), AutoRegressif (AR) and ARMA models. The method uses the Poisson integral representation in Hardy spaces in order to estimate an outer transfer function from its power spectral density. - Simulators for Rayleigh fading channels (1-D). - A scheme for the Wold decomposition for texture images (2-D). In the third chapter we deal with hybrid models for image representation and compression. We propose a compression scheme which jointly uses, on one hand, Wold models for textured regions of the image, and on the other hand a wavelet-based approach for coding the 'cartoon' (or non-textured) part of the image. In this context, we propose a new algorithm for the decomposing images in a textured part and a non-textured part. The separate parts are then coded with the appropriate representation.
|
9 |
Opérateurs de composition sur les espaces de fonctions holomorphes de plusieurs variables complexes : universalité dans les espaces de Banach et de FréchetCharpentier, Stéphane 22 November 2010 (has links)
Dans la première partie de ma thèse, il est démontré, dans les espaces de Banach et de Fréchet de suites, un résultat d'existence d'un sous-espace fermé de dimension infinie dont les éléments non-nuls sont des séries universelles.La deuxième partie est consacrée à l'étude des opérateurs de composition sur des espaces de fonctions holomorphes de plusieurs variables complexes. Dans un premier temps, le spectre et la dynamique des opérateurs de composition hyperboliques sur les espaces de Hardy de la boule sont décrits complètement.Dans un second temps, la continuité et la compacité des opérateurs de composition sur les espaces de Hardy-Orlicz et de Bergman-Orlicz de la boule sont caractérisées. On en déduit en particulier l'existence d'une classe de fonctions d'Orlicz définissant des espaces du type précédent sur lesquels tout opérateur de composition est continu. / In the first part of my thesis, a result on the existence of a closed infinite-dimensional subspace, whose non-zero elements are universal series, is given in Banach and Fréchet spaces framework.The second part is devoted to the study of composition operators on spaces of several variables analytic functions. First, the spectrum and the dynamics of hyperbolic composition operators acting on Hardy spaces on the ball are completely described.Second, continuity and compactness of composition operators on Hardy-Orlicz and Bergman-Orlicz spaces on the ball are characterized. In particular, we deduce from the treatment of the continuity that there exists a class of Orlicz functions which define Hardy-Orlicz and Bergman-Orlicz spaces, on which every composition operator is bounded.
|
10 |
Spectre étendu des opérateurs et applications / Extended spectrum of operators and applicationsAlkanjo, Hasan 10 December 2014 (has links)
Cette thèse s'articule autour d'une notion spectrale assez récente, appelée le spectre étendu des opérateurs. Dans la première partie nous fournissons des propriétés générales du spectre étendu d'un opérateur dans certains cas particuliers, tels que le cas de dimension finie et celui des opérateurs inversibles. Nous nous intéressons dans la deuxième partie à l'étude du spectre étendu de l'opérateur shift tronqué Su. En particulier, nous donnons une description complète des vecteurs propres étendus associes à chaque valeur propre étendue de Sb, ou b est un produit de Blaschke quelconque. Dans la troisième partie nous décrirons complètement le spectre étendu et les sous espaces propres étendus d'une classe d'opérateurs très importante : celle des opérateurs normaux. Nous commençons d'abord par la classe des opérateurs qui sont produits d'un opérateur positif par un autoadjoint. Ensuite, nous utilisons le théorème de Fuglede-Putnam pour déduire une description complète des valeurs et des vecteurs propres étendus des opérateurs normaux, en fonction de leur mesure spectrale. Dans la dernière partie, nous appliquons nos résultats des trois premières parties sur des exemples concrets. En particulier, nous traitons= le problème des sous espaces propres étendus des opérateurs définis dans un espace de dimension finie. Ensuite, nous montrons l'existence d'un opérateur compact quasinilpotent dont le spectre étendu est réduit au singleton {1}. Enfin, nous traitons deux opérateurs de Cesaro très importants dans les applications / This thesis is based on a relatively new spectral notion, called extended spectrum of operators. In the first part, we provide general properties of extended spectrum of an operator in some special cases, such as the case of finite dimension and the case of invertible operator. We focused in the second part on characterizing the extended spectrum of truncated shift operator Su. In particular, we give a complete description of the extended eigenvectors associated to each extended eigenvalue of Sb, where b is a Blaschke product. In the third part, we describe the extended spectrum and the extended eigenvectors of a very important class of operators , that is the normal operators. We first start by describing these last sets for the product of a positive and a self-adjoint operator which are both injective. After, we use the Fuglede-Putnam theorem to describe the same sets for normal operators, in terms of their spectral measure. In the last part, we apply our results from the last three parts on concrete examples. In particular, we address the problem of extended eigenvectors of operators defined in a finite dimension space. Next, we show the existence of a quasinilpotent compact operator whose extended spectrum is reduced to {1}. Finally, we study two Cesaro operators which are very important in applications
|
Page generated in 0.0454 seconds