• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • Tagged with
  • 8
  • 8
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structures of some weighted composition operators on the space of square integrable functions with respect to a positive measure

Pan, Hong-Bin 12 June 2002 (has links)
Let T be the unit circle,(mu) be a Borel probability measure on T and (phi) be a bounded Lebesgue measurable function on T. in this paper we consider the weighted composition operator W(phi) on L^2(T,mu) defined by W(phi)f:=(phi)*(f(circle)(tau)), f in L^2(T), where (tau) is the map (tau)(z)=z^2, z in T. We will study the von Neumann-Wold decomposition of W(phi) when W(phi) is an isometry and (mu)<< m,where m is the normalized Lebesgue measure on T.
2

Fredholm spectra of £f-Toeplitz operators

Chen, Chih-Hao 25 July 2011 (has links)
Abstract Let £f be a complex number in the closed unit disc , and H be a separable Hilbert space with the orthonormal basis, say,£`= {en : n =0 , 1 , 2¡K}. A bounded operator T on H is called a £f-Toeplitz operator if <Tem+1 , en+1> =£f <Tem , en> (where <¡E,¡E> is the inner product on H).If the function £p can be represented as a linear combination of the above orthonormal basis with the coefficients an=<Te0 ,en >, n≥ 0,and an=<Telnl ,e0 >, n<0, then we call this the symbol of T . The subject arises naturally from a special case of the operator equation S*AS =£fA + B; where S is a shift on H , and in this operator equation the matrix A can solve a special set of simultaneous equations. It is also clear that the well-known Toeplitz operators are precisely the solutions of S*AS = A, when S is the unilateral shift.In this paper,we will review the similarities and differences between £f-Toeplitz operators and Toeplitz operators. The main purpose is to generalize the well-known Coburn's characterization for the essential spectrum(or,the same in this case,spectrum)for Toeplitz operators to £f-Toeplitz operators.
3

A Constructive Approach to the Universality Criterion for Semigroups

Walmsley, David 24 March 2017 (has links)
No description available.
4

Semigroupes d'opérateurs de composition sur des espaces de Hardy pondérés / Semigroups of composition operators on weighted Hardy spaces

Avicou, Corentin 09 November 2015 (has links)
Cette thèse se situe à l'intersection de plusieurs domaines mathématiques particulièrement actifs actuellement : l'analyse fonctionnelle, la théorie des opérateurs, la dynamique complexe et la théorie des semigroupes. Nous étudierons ici les semigroupes d'opérateurs de composition sur quelques espaces de Hardy pondérés, notamment l'espace de Hardy du disque et l'espace de Dirichlet. Dans un premier temps, nous allons voir pourquoi se placer à cette intersection est pertinent, en montrant comment utiliser les propriétés des semigroupes pour calculer explicitement les normes de certains opérateurs de composition. Dans un second temps, nous étudierons les propriétés des semigroupes d'opérateurs de compositions qui sont directement accessibles à partir de la seule donnée du générateur infinitésimal du semigroupe, en nous concentrant tout particulièrement sur les notions d'analyticité et de compacité / This thesis takes place at the intersection of several particularly active mathematical areas : functional analysis, operator theory, complex dynamics and theory of semigroups. Here, we study semigroups of composition operators on some weighted Hardy spaces, in particular the Hardy space of the disk and the Dirichlet space. First, we will show why this intersection is relevant for our study, pointing out how to use the properties of semigroups to explicitly compute the norms of some composition operators. Secondly, we will study the properties of semigroups of composition operators that are directly accessible from the only data of the infinitesimal generator, focusing on analyticity and compactness
5

Commutants of composition operators on the Hardy space of the disk

Carter, James Michael 06 November 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The main part of this thesis, Chapter 4, contains results on the commutant of a semigroup of operators defined on the Hardy Space of the disk where the operators have hyperbolic non-automorphic symbols. In particular, we show in Chapter 5 that the commutant of the semigroup of operators is in one-to-one correspondence with a Banach algebra of bounded analytic functions on an open half-plane. This algebra of functions is a subalgebra of the standard Newton space. Chapter 4 extends previous work done on maps with interior fixed point to the case of the symbol of the composition operator having a boundary fixed point.
6

Opérateurs de composition sur les espaces de fonctions holomorphes de plusieurs variables complexes : universalité dans les espaces de Banach et de Fréchet

Charpentier, Stéphane 22 November 2010 (has links)
Dans la première partie de ma thèse, il est démontré, dans les espaces de Banach et de Fréchet de suites, un résultat d'existence d'un sous-espace fermé de dimension infinie dont les éléments non-nuls sont des séries universelles.La deuxième partie est consacrée à l'étude des opérateurs de composition sur des espaces de fonctions holomorphes de plusieurs variables complexes. Dans un premier temps, le spectre et la dynamique des opérateurs de composition hyperboliques sur les espaces de Hardy de la boule sont décrits complètement.Dans un second temps, la continuité et la compacité des opérateurs de composition sur les espaces de Hardy-Orlicz et de Bergman-Orlicz de la boule sont caractérisées. On en déduit en particulier l'existence d'une classe de fonctions d'Orlicz définissant des espaces du type précédent sur lesquels tout opérateur de composition est continu. / In the first part of my thesis, a result on the existence of a closed infinite-dimensional subspace, whose non-zero elements are universal series, is given in Banach and Fréchet spaces framework.The second part is devoted to the study of composition operators on spaces of several variables analytic functions. First, the spectrum and the dynamics of hyperbolic composition operators acting on Hardy spaces on the ball are completely described.Second, continuity and compactness of composition operators on Hardy-Orlicz and Bergman-Orlicz spaces on the ball are characterized. In particular, we deduce from the treatment of the continuity that there exists a class of Orlicz functions which define Hardy-Orlicz and Bergman-Orlicz spaces, on which every composition operator is bounded.
7

Composition Operators on Classes of Holomorphic Functions on Banach Spaces

Santacreu Ferra, Daniel 05 September 2022 (has links)
[ES] El objetivo principal de esta tesis es el estudio de diferentes propiedades (principalmente ergódicas) de operadores de composición y de composición ponderados actuando en espacios de funciones holomorfas definidas en un espacio de Banach de dimensión infinita. Sea X un espacio de Banach y U un subconjunto abierto. Dada una aplicación φ : U → U, la acción f 7 → Cφ ( f ) = f ◦ φ define un operador, llamado operador de composición (y a φ se le llama símbolo del operador). Consideramos este operador actuando en diferentes espacios de funciones. La filosofía general es intentar caracterizar en cada caso las propiedades de nuestro interés en función de condiciones en φ. También, dada ψ: U → C, el operador de multiplicación se define como Mψ( f ) = ψ · f y (con φ como antes), el operador de composición ponderado como Cψ,φ ( f ) = ψ·( f ◦φ) (en este caso ψ se conoce como el peso o multiplicador del operador). Nuevamente, la idea es describir propiedades de estos operadores en términos de condiciones sobre φ y/o ψ. Claramente Cψ,φ = Mψ ◦ Cφ , y tomando φ = idU (la identidad en U) o ψ ≡ 1 (la función constante 1) recuperamos Mψ y Cφ . Denotamos con B a la bola unidad abierta de X . El espacio de funciones holomorfas f : B → C se denota H(B). Escribimos Hb(B) para el espacio de funciones holomorfas en B de tipo acotado y H∞(B) para el espacio de funciones holomorfas y acotadas en B. Vamos a considerar operadores de composición y de composición ponderados definidos en cada uno de estos espacios (tomando entonces U = B en la definición). También consideramos operadores de composición definidos en el espacio vectorial de polinomios continuos y m-homogéneos (denotado P (m X )). En este caso tomamos U = X . La tesis consta de cinco capítulos. En el Capítulo 1 damos las definiciones y resultados básicos necesarios para que el texto sea autocontenido. En el Capítulo 2 tratamos con operadores de composición ergódicos en media y acotados en potencias definidos en P (m X ). En el Capítulo 3 estudiamos operadores de composición ergódicos en media y acotados en potencias definidos en H(B), Hb(B) y H∞(B); tratando también el caso particular en que B es la bola de un espacio de Hilbert. En el Capítulo 4 estudiamos la compacidad de operadores de composición ponderados definidos en H∞(B), así como la acotación, reflexividad, cuándo es Montel y la compacidad (débil) en Hb(B). Finalmente, en el Capítulo 5 obtenemos resultados sobre la acotación en potencias y ergodicidad en media de operadores de composición ponderados actuando en H(B), Hb(B) y H∞(B); así como sobre compacidad y ergodicidad en media del operador de multiplicación. / [CA] L’objectiu principal d’aquesta tesi és l’estudi de diferents propietats (principalment ergòdiques) d’operadors de composició i de composició ponderats actuant en espais de funcions holomorfes en un espai de Banach de dimensió infinita. Siga X un espai de Banach i U un subconjunt obert. Donada una aplicació φ : U → U, l’acció f 7 → Cφ ( f ) = f ◦ φ defineix un operador, anomenat operador de compo- sició (i φ s’anomena símbol de l’operador). Considerem aquest operador actuant en diferents espais de funcions. La filosofia general és intentar caracteritzar en cada cas les propietats del nostre interés en funció de condicions en φ. També, donada ψ: U → C, l’operador de multiplicació es defineix com a Mψ( f ) = ψ · f i (amb φ com abans), l’operador de composició ponderat com a Cψ,φ ( f ) = ψ · ( f ◦ φ) (en aquest cas ψ es coneix com el pes o multiplicador de l’operador). Novament, la idea és descriure propietats d’aquests operadors en termes de condicions sobre φ i/o ψ. Clarament Cψ,φ = Mψ ◦ Cφ , i prenent φ = idU (la identitat en U) o ψ ≡ 1 (la funció constant 1) recuperem Mψ i Cφ . Denotem per B la bola unitat oberta d’X . L’espai de funcions holomorfes f : B → C es denota H(B). Escrivim Hb(B) per a l’espai de funcions holomorfes en B de tipus fitat i H∞(B) per a l’espai de funcions holomorfes i fitades en B. Anem a considerar ope- radors de composició i de composició ponderats definits en cadascun d’aquests espais (prenent llavors U = B en la definició). També considerem operadors de composició definits en l’espai vectorial de polinomis continus i m-homogenis (denotat P (m X )). En aquest cas prenem U = X . La tesi consta de cinc capítols. En el Capítol 1 donem les definicions i resultats bàsics necessaris perquè el text siga autocontingut. En el Capítol 2 tractem amb ope- radors de composició ergòdics en mitjana i fitats en potències definits en P (m X ). En el Capítol 3 estudiem operadors de composició ergòdics en mitjana i fitats en potències definits en H(B), Hb(B) i H∞(B); tractant també el cas particular en que B és la bola d’un espai de Hilbert. En el Capítol 4 estudiem la compacitat d’operadors de composi- ció ponderats definits en H∞(B), així com també la fitació, reflexivitat, quan és Montel i la compacitat (feble) en Hb(B). Finalment, en el Capítol 5 obtenim resultats sobre la fitació en potències i ergodicitat en mitjana d’operadors de composició ponderats actuant en H(B), Hb(B) i H∞(B); així com també sobre compacitat i ergodicitat en mitjana de l’operador de multiplicació. / [EN] The main aim in this thesis is to study different properties (mostly ergodic) of compo- sition and weighted composition operators acting on spaces of holomorphic functions defined on an infinite dimensional complex Banach space. Let X be a Banach space and U some open subset. Given a mapping φ : U → U the action f 7 → Cφ ( f ) = f ◦ φ defines an operator, called composition operator (and φ is called the symbol of the operator). We consider this operator acting on different spaces of functions. The general philosophy is to try to characterise in each case the properties of our interest in terms of conditions on φ. Also, given ψ: U → C the multiplication operator is defined as Mψ( f ) = ψ· f and (with φ as above), the weighted composition operator as Cψ,φ ( f ) = ψ · ( f ◦ φ) (here ψ is called the weight or multiplier of the operator). Again, the idea is to describe properties of these operators in terms of conditions on ψ and/or φ. Clearly Cψ,φ = Mψ ◦ Cφ , and taking φ = idU (the identity on U) or ψ ≡ 1 (the constant function 1) we recover Mψ and Cφ . We denote the open unit ball of X by B. The space of all holomorphic functions f : B → C is denoted by H(B). We write Hb(B) for the space holomorphic functions of bounded type on B, and H∞(B) for the space of bounded holomorphic functions on B. We are going to consider composition and weighted composition operators defined on each one of these spaces (taking then U = B in the definition). We also consider composition operators defined on the vector space of all continuous m-homogeneous polynomials on X (which is denoted by P (m X )). In this case we take U = X . The thesis consists of 5 chapters. In Chapter 1 we introduce definitions and ba- sic results, needed to make the text self-contained. In Chapter 2 we deal with mean ergodic and power bounded composition operators defined on P (m X ). In Chapter 3 we study mean ergodic and power bounded composition operators defined on H(B), Hb(B) and H∞(B); considering also the particular case when B is the ball of a Hilbert space. In Chapter 4 we study compactness of weighted composition operators defined on H∞(B), as well as boundedness, reflexivity, being Montel and (weak) compactness on Hb(B). Finally, in Chapter 5 we obtain different results about power bounded- ness and mean ergodicity of weighted composition operators acting on H(B), Hb(B) and H∞(B), as well as about compactness and mean ergodicity of the multiplication operator. / Santacreu Ferra, D. (2022). Composition Operators on Classes of Holomorphic Functions on Banach Spaces [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/185235
8

Vlastnosti slabě diferencovatelných funkcí a zobrazení / Properties of weakly differentiable functions and mappings

Kleprlík, Luděk January 2014 (has links)
We study the optimal conditions on a homeomorphism f : Ω → Rn which guarantee that the composition u◦f is weakly differentiable and its weak derivative belongs to the some function space. We show that if f has finite distortion and q-distortion Kq = |Df|q /Jf is integrable enough, then the composition operator Tf (u) = u ◦ f maps functions from W1,q loc into space W1,p loc and the well-known chain rule holds. To prove it we characterize when the inverse mapping f−1 maps sets of measure zero onto sets of measure zero (satisfies the Luzin (N−1 ) con- dition). We also fully characterize conditions for Sobolev-Lorentz space WLn,q for arbitrary q and for Sobolev Orlicz space WLq log L for q ≥ n and α > 0 or 1 < q ≤ n and α < 0. We find a necessary condition on f for Sobolev rearrangement invariant function space WX close to WLq , i.e. X has q-scaling property. 1

Page generated in 0.1167 seconds